Question #275856
  1.  y(4)+8y''+16y=0       ans, y=(c1+c2x)cos2x+(c3+c4x)sin2x
  2. y(4)+4y''+4y=0          ans, y=(c1+c2x)cos sqr2sqr2 x+(c3+c4x)sinsqr2sqr2 x
1
Expert's answer
2021-12-08T16:44:40-0500

1.

Corresponding (auxiliary) equation


r4+8r2+16=0r^4+8r^2+16=0

(r2+4)2=0(r^2+4)^2=0

r2=4r^2=-4

r=±2ir=\pm 2i

The general solution of the given differential equation is


y=c1cos(2x)+c2xcos(2x)y=c_1\cos(2x)+c_2x\cos(2x)

+c3sin(2x)+c4xsin(2x)+c_3\sin(2x)+c_4x\sin(2x)

2.

Corresponding (auxiliary) equation


r4+4r2+4=0r^4+4r^2+4=0

(r2+2)2=0(r^2+2)^2=0

r2=2r^2=-2

r=±i2r=\pm i\sqrt{2}

The general solution of the given differential equation is



y=c1cos(2x)+c2xcos(2x)y=c_1\cos(\sqrt{2}x)+c_2x\cos(\sqrt{2}x)

+c3sin(2x)+c4xsin(2x)+c_3\sin(\sqrt{2}x)+c_4x\sin(\sqrt{2}x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS