1. D(x2+2x+3)
Since D=dxd
So, we have,
dxd(x2+2x+3)=dxd(x2)+dxd(2x)+dxd(3)=2x+22. D2(xe3x−e4x)
Since D=dxd
So, we have,
dx2d2(xe3x−e4x)dxd(dxd(xe3x−e4x))
=dxd(dxdxe3x−dxde4x)
Recall the product rule of differentiation
UV=Vdu+Udv
By comparison let u=x,v=e3x
Upon differentiation. We have,
dxd(e3x+3xe3x−4e4x)=dxd(e3x)+3dxd(xe3x)−4dxd(e4x)=3e3x+3(e3x+3xe3x)−4(4e4x)=3e3x+3e3x+9xe3x−16e4x=9xe3x+6e3x−16e4x
Comments