Question #275717

Evaluate the following functions in differential operator form.

  1. D(x2+2x-3) Ans. (2x+2)
  2. D2(xe3x-e4x) Ans. 9xe3x+6e3x-16e4x
1
Expert's answer
2022-01-19T13:33:56-0500

1. D(x2+2x+3)1.\ D\left(x^{2}+2 x+3\right)

Since D=ddxD=\frac{d}{d x}

So, we have,

 ddx(x2+2x+3)=ddx(x2)+ddx(2x)+ddx(3)=2x+22. D2(xe3xe4x)\begin{aligned} &\frac{d}{d x}\left(x^{2}+2 x+3\right) \\ &=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2 x)+\frac{d}{d x}(3) \\ &=2 x+2 \\ &2.\ D^{2}\left(x e^{3 x}-e^{4 x}\right) \end{aligned}  

Since D=ddxD=\frac{d}{d x}

So, we have,

 d2dx2(xe3xe4x)ddx(ddx(xe3xe4x))\begin{aligned} &\frac{d^{2}}{d x^{2}}\left(x e^{3 x}-e^{4 x}\right) \\ &\frac{d}{d x}\left(\frac{d}{d x}\left(x e^{3 x}-e^{4 x}\right)\right) \end{aligned}

=ddx(ddxxe3xddxe4x)=\frac{d}{d x}\left(\frac{d}{d x} x e^{3 x}-\frac{d}{d x} e^{4 x}\right)  

Recall the product rule of differentiation

 UV=Vdu+UdvU V=V d u+U d v

By comparison let u=x,v=e3xu=x, v=e^{3 x}

Upon differentiation. We have,

 ddx(e3x+3xe3x4e4x)=ddx(e3x)+3ddx(xe3x)4ddx(e4x)=3e3x+3(e3x+3xe3x)4(4e4x)=3e3x+3e3x+9xe3x16e4x=9xe3x+6e3x16e4x\begin{aligned} &\frac{d}{d x}\left(e^{3 x}+3 x e^{3 x}-4 e^{4 x}\right) \\ &=\frac{d}{d x}\left(e^{3 x}\right)+3 \frac{d}{d x}\left(x e^{3 x}\right)-4 \frac{d}{d x}\left(e^{4 x}\right) \\ &=3 e^{3 x}+3\left(e^{3 x}+3 x e^{3 x}\right)-4\left(4 e^{4 x}\right) \\ &=3 e^{3 x}+3 e^{3 x}+9 x e^{3 x}-16 e^{4 x} \\ &=9 x e^{3 x}+6 e^{3 x}-16 e^{4 x} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS