Question #275851
  1. y'' + 4y' + 7y = 0      ans, y= e-2x(c1cosx+c2sinx)
  2. 2y'' - 7y' + 3y = 0     ans, y=c1e3x+c2e1/2x
1
Expert's answer
2021-12-07T13:46:43-0500

1.

Corresponding (auxiliary) equation


r2+4r+7=0r^2+4r+7=0

D=(4)24(1)(7)=12D=(4)^2-4(1)(7)=-12

r=4±122(1)=2±i3r=\dfrac{-4\pm\sqrt{-12}}{2(1)}=-2\pm i\sqrt{3}

The general solution of the given differential equation is


y=e2x(c1cos(3x)+c2sin(3x))y=e^{-2x}(c_1\cos(\sqrt{3}x)+c_2\sin(\sqrt{3}x))

2.

Corresponding (auxiliary) equation


2r27r+3=02r^2-7r+3=0

D=(7)24(2)(3)=25D=(-7)^2-4(2)(3)=25

r=7±252(2)=7±54r=\dfrac{7\pm\sqrt{25}}{2(2)}=\dfrac{7\pm5}{4}

r1=7+54=3,r2=754=12r_1=\dfrac{7+5}{4}=3, r_2=\dfrac{7-5}{4}=\dfrac{1}{2}

The general solution of the given differential equation is


y=c1e3x+c2ex/2y=c_1e^{3x}+c_2e^{x/2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS