1.
Corresponding (auxiliary) equation
r2+4r+7=0
D=(4)2−4(1)(7)=−12
r=2(1)−4±−12=−2±i3 The general solution of the given differential equation is
y=e−2x(c1cos(3x)+c2sin(3x))
2.
Corresponding (auxiliary) equation
2r2−7r+3=0
D=(−7)2−4(2)(3)=25
r=2(2)7±25=47±5
r1=47+5=3,r2=47−5=21
The general solution of the given differential equation is
y=c1e3x+c2ex/2
Comments