Question #275550

Solve the following differential equations in series.

x²d²y/dx + xdy/dx +(x²-4)y=0


1
Expert's answer
2021-12-07T11:35:46-0500

y(x)=n=0anxny(x)=\displaystyle\sum_{n=0}^{\infin}a_nx^n


y(x)=n=1nanxn1y'(x)=\displaystyle\sum_{n=1}^{\infin}na_nx^{n-1}


y(x)=n=2nan(n1)xn2y''(x)=\displaystyle\sum_{n=2}^{\infin}na_n(n-1)x^{n-2}


x2n=2nan(n1)xn2+xn=1nanxn1+(x24)n=0anxn=0x^2\displaystyle\sum_{n=2}^{\infin}na_n(n-1)x^{n-2}+x\displaystyle\sum_{n=1}^{\infin}na_nx^{n-1}+(x^2-4)\displaystyle\sum_{n=0}^{\infin}a_nx^n=0


(x24)(a0+a1x)+a1x+n=2(nan(n1)+nan+(x24)an)xn=0(x^2-4)(a_0+a_1x)+a_1x+\displaystyle\sum_{n=2}^{\infin}(na_n(n-1)+na_n+(x^2-4)a_n)x^n=0


n=2nan(n1)xn+n=1nanxn+n=0anxn+24n=0anxn=0\displaystyle\sum_{n=2}^{\infin}na_n(n-1)x^{n}+\displaystyle\sum_{n=1}^{\infin}na_nx^{n}+\displaystyle\sum_{n=0}^{\infin}a_nx^{n+2}-4\displaystyle\sum_{n=0}^{\infin}a_nx^n=0


n=2nan(n1)xn+n=1nanxn+n=2an2xn4n=0anxn=0\displaystyle\sum_{n=2}^{\infin}na_n(n-1)x^{n}+\displaystyle\sum_{n=1}^{\infin}na_nx^{n}+\displaystyle\sum_{n=2}^{\infin}a_{n-2}x^{n}-4\displaystyle\sum_{n=0}^{\infin}a_nx^n=0


4a04a1x+a1x+n=2(nan(n1)+nan+an24an)xn=0-4a_0-4a_1x+a_1x+\displaystyle\sum_{n=2}^{\infin}(na_n(n-1)+na_n+a_{n-2}-4a_n)x^{n}=0

a0=a1=0a_0=a_1=0

nan(n1)+nan+an24an=0,n2na_n(n-1)+na_n+a_{n-2}-4a_n=0,n\ge 2


an=an2n(n1)+n4=an2n24,n2a_n=-\frac{a_{n-2}}{n(n-1)+n-4}=-\frac{a_{n-2}}{n^2-4},n\neq 2


y(x)=n=3an2n24xny(x)=-\displaystyle\sum_{n=3}^{\infin}\frac{a_{n-2}}{n^2-4}x^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS