Answer to Question #252332 in Differential Equations for pde

Question #252332

Using the Laplace transform method, solve the partial differential equation

∂u/∂t=u-∂u/∂x. Subject to the initial condition u(x,0)=e-7x, x>0,t>0


1
Expert's answer
2021-11-03T11:57:40-0400

Answer:-

Laplace transform:

"L(u(x,t))=\\int^{\\infin}_0 e^{-st}u(x,t)dt=U(x,s)"


"L(u_t(x,t))=\\int^{\\infin}_0 e^{-st}u_t(x,t)dt=e^{-st}u(x,t)|^{\\infin}_0+s\\int^{\\infin}_0 e^{-st}u(x,t)dt="

"=sU(x,s)-U(x,0)"


"L(u_x(x,t))=\\int^{\\infin}_0 e^{-st}u_x(x,t)dt=U_x(x,s)"


Then:


"sU(x,s)-U(x,0)=U(x,s)-U_x(x,s)"


"\\frac{dU}{dx}(x,s)+(s-1)U(x,s)=e^{-7x}"


integrating factor:

"\\mu=e^{\\int(s-1)dx}=e^{(s-1)x}"


Thus we have:

"\\frac{d}{dx}[e^{(s-1)x}U(x,s)]=e^{(s-1)x}e^{-7x}"


"U(x,s)=e^{-(s-1)x}\\int^x_0 e^{(s-1)r}e^{-7r}dr+ce^{-(s-1)x}="


"=e^{-(s-1)x}\\cdot\\frac{e^{(s-8)r}}{s-8}|^x_0+ce^{-(s-1)x}=\\frac{e^{-7x}-e^{-(s-1)x}}{s-8}+ce^{-(s-1)x}"


Taking the inverse Laplace transform we have:

"u(x,t)=e^{-7x}e^{8t}-e^{x+8(t-x)}H(t-x)+ce^t\\delta(t-x)"


where H is Heaviside function:


"H(x)=\\begin{cases}\n 0 &x<0 \\\\\n 1 &x\\ge0\n\\end{cases}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS