Given Lagrange’s partial differential equation is
Pp+Qq=R Let
F(u,v)=0be the solution of the given Lagrange’s equation .
Differentiating partially with respect to x , we have
(∂u∂F∂x∂u+∂u∂F∂z∂u∂x∂z)
+(∂v∂F∂x∂v+∂v∂F∂z∂v∂x∂z)=0 Or
∂u∂F(∂x∂u+p∂z∂u)+∂v∂F(∂x∂v+p∂z∂v)=0
Similary, differentiating partially with respect to x , we have
∂u∂F(∂y∂u+q∂z∂u)+∂v∂F(∂y∂v+q∂z∂v)=0
Eliminating ∂u∂F and ∂v∂F, we get
(∂x∂u+p∂z∂u)(∂y∂v+q∂z∂v)
−(∂y∂u+q∂z∂u)(∂x∂v+p∂z∂v)=0 Then
(∂y∂u∂z∂v−∂z∂u∂y∂v)p+(∂z∂u∂x∂v−∂x∂u∂z∂v)q
=∂x∂u∂y∂v−∂y∂u∂x∂v (∗) which can also be put in the form
∂(y,z)∂(u,v)p+∂(z,x)∂(u,v)q=∂(x,y)∂(u,v) or
Pp+Qq=R where
P=∂y∂u∂z∂v−∂z∂u∂y∂v=∂(y,z)∂(u,v)
Q=∂z∂u∂x∂v−∂x∂u∂z∂v=∂(z,x)∂(u,v)
R=∂x∂u∂y∂v−∂y∂u∂x∂v=∂(x,y)∂(u,v)Thus, the equation Pp+Qq=R is a partial differential equation of order one and degree one for which F(u,v) is a solution.
Now taking the differentials of two independent solutions u(x,y,z)=c1 and v(x,y,z)=c2, we get
∂x∂udx+∂y∂udy+∂z∂udz=0
∂x∂vdu+∂y∂vdy+∂z∂vdz=0Since u and v are independent functions, therefore, solving equations for the ratios dx,dy,dz, we get
∂y∂u∂z∂v−∂z∂u∂y∂vdx=∂z∂u∂x∂v−∂x∂u∂z∂vdy
=∂x∂u∂y∂v−∂y∂u∂x∂vdzGiven that u=u(x,y,z)=c1,v=v(x,y,z)=c2 are solutions of
dx/P=dy/Q=dz/R Then
∂y∂u∂z∂v−∂z∂u∂y∂v=kP
∂z∂u∂x∂v−∂x∂u∂z∂v=kQ
∂x∂u∂y∂v−∂y∂u∂x∂v=kR Substitute in(∗)
kPp+kQq=kR We get
Pp+Qq=R which is the given partial differential equation.
Therefore, if u(x,y,z)=c1 and v(x,y,z)=c2 are two independent solutions of the system of differential equations dx/P=dy/Q=dz/R, then F(u,v)=0 is a solution of Pp+Qq=R, where F is an arbitrary function.
Comments