Question #252295

By the method of separation of variables solve the boundary value problem

∂u/∂x-5(∂u/∂t)=u given u(x,0)=e-2x

1
Expert's answer
2021-11-03T17:29:02-0400

ux5ut=u,u(x,0)=e2xLet u(x,t)=P(x)G(t)dP(x)G(t)dx5dP(x)G(t)dt=P(x)G(t)(1)Divide 1 by P(x)G(t), we getdP(x)dx1P5dG(t)dt1G=1=dP(x)dx1P=1+5dG(t)dt1G=λwhere λ is the separation constantNext, we consider 3 cases, λ=0,λ>0,λ<0When λ=0, we have thatp(x)=0    p(x)=c1, where c1 is constant. Also G(t)G(t)=15, integrating we have thatG(t)=e15tu(x,t)=c1e15t Applying initial conditions, we have thatu(x,0)=c1=e2xu(x,t)=e2xe15twhen λ<0, let λ=k2    P(x)P(x)=k2, integrating we havelnP(x)=k2x    P(x)=ek2xAlso, 5G(t)G(t)=k21    G(t)G(t)=k215lnG(t)=k215t    G(t)=ek215tu(x,t)=ek2xek215tApplying initial conditions, we have u(x,0)=ek2x=e2x    k=2    u(x,t)=e2xe35twhen λ>0, let λ=k2    P(x)P(x)=k2, integrating we havelnP(x)=k2x    P(x)=ek2xAlso, 5G(t)G(t)=k21    G(t)G(t)=k215lnG(t)=k215t    G(t)=ek215tu(x,t)=ek2xek215tApplying initial conditions, we have u(x,0)=ek2x=e2x    k=2i    u(x,t)=e2xe35t\displaystyle \frac{\partial u}{\partial x} - 5\frac{\partial u}{\partial t} = u, u(x,0)= e^{-2x}\\ \text{Let $u(x,t) = P(x)G(t)$}\\ \frac{dP(x)G(t)}{dx} - 5\frac{d P(x)G(t)}{d t} = P(x)G(t)-(1)\\ \text{Divide 1 by P(x)G(t), we get}\\ \frac{d P(x)}{d x}\cdot \frac{1}{P} - 5\frac{dG(t)}{d t}\frac{1}{G} = 1\\ = \frac{d P(x)}{d x}\cdot \frac{1}{P} = 1+ 5\frac{dG(t)}{d t}\frac{1}{G}=\lambda\\ \text{where $\lambda$ is the separation constant}\\ \text{Next, we consider 3 cases, $\lambda = 0, \lambda>0, \lambda < 0$}\\ \text{When $\lambda = 0$, we have that}\\ p'(x)= 0 \implies p(x) = c_1, \text{ where $c_1$ is constant. Also }\\ \frac{G'(t)}{G(t)}=-\frac{1}{5} , \text{ integrating we have that}\\ G(t) = e^{-\frac{1}{5}t}\\ u(x,t) = c_1e^{-\frac{1}{5}t}\\ \text{ Applying initial conditions, we have that}\\ u(x,0) = c_1 = e^{-2x}\\ \therefore u(x,t) = e^{-2x}e^{-\frac{1}{5}t}\\ \text{when $\lambda < 0$, let $\lambda = -k^2$}\\ \implies \frac{P'(x)}{P(x)}=-k^2, \text{ integrating we have}\\ \ln P(x) = -k^2x \implies P(x) = e^{-k^2x}\\ \text{Also, } 5\frac{G'(t)}{G(t)} = -k^2-1 \implies \frac{G'(t)}{G(t)} = \frac{-k^2-1}{5}\\ \ln G(t)=\frac{-k^2-1}{5}t\\ \implies G(t)=e^{\frac{-k^2-1}{5}t}\\ \therefore u(x,t) = e^{-k^2x}e^{\frac{-k^2-1}{5}t}\\ \text{Applying initial conditions, we have }\\ u(x,0)= e^{-k^2x}= e^{-2x}\\ \implies k = \sqrt{2}\\ \implies u(x,t)=e^{-2x}e^{-\frac{3}{5}t}\\ \text{when $\lambda > 0$, let $\lambda = k^2$}\\ \implies \frac{P'(x)}{P(x)}=k^2, \text{ integrating we have}\\ \ln P(x) = k^2x \implies P(x) = e^{k^2x}\\ \text{Also, } 5\frac{G'(t)}{G(t)} = k^2-1 \implies \frac{G'(t)}{G(t)} = \frac{k^2-1}{5}\\ \ln G(t)=\frac{k^2-1}{5}t\\ \implies G(t)=e^{\frac{k^2-1}{5}t}\\ \therefore u(x,t) = e^{k^2x}e^{\frac{k^2-1}{5}t}\\ \text{Applying initial conditions, we have }\\ u(x,0)= e^{k^2x}= e^{-2x}\\ \implies k = \sqrt{2}i\\ \implies u(x,t)=e^{-2x}e^{-\frac{3}{5}t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS