Question #252289

use the method of separation of variables to determine the general solution to the one dimensional heat equation ∂u/∂t=α(∂2u/∂x2)=0,0 x l,t≥ 0 subject to the initial condition u(x,0)=g(x). Hence compute the particular solution when g(x)=0


1
Expert's answer
2021-10-29T03:01:09-0400

Solution;

The heat equation;

ut=α(2ux2)=0,0xl,t0\frac{\partial u}{\partial t}=\alpha(\frac{\partial^2u}{\partial x^2})=0,0\leq x\leq l,t\geq0

Let ;

u(x,t)=X(x)T(t)u(x,t)=X(x)T(t)

X(x) is some function dependent on x alone while T(t) is some function dependent on t alone.

The factorized function u(x, t) = X(x)T (t) is a solution to the heat equation if and only if;

X(x)T(t)=αX(x)T(t)X(x)T'(t)=\alpha X''(x)T(t)

Hence;

X(x)X(x)=1αT(t)T(t)\frac{X''(x)}{X(x)}=\frac1\alpha\frac{T'(t)}{T(t)}

The two sides are equal. So both sides must be independent of both x and t and hence equal to some constant, say σ. So we have;

X(x)X(x)=σ\frac{X''(x)}{X(x)}=\sigma ; 1αT(t)T(t)=σ\frac1\alpha\frac{T'(t)}{T(t)}=\sigma


Therefore;

X(x)σX(x)=0X''(x)-\sigma X(x)=0

T(t)ασT(t)=0T'(t)-\alpha\sigma T(t)=0

If σ\neq 0, the general solution to the above equations are;

X(x)=c1eσx+c2eσxX(x)=c_1e^{\sqrt{\sigma}x}+c_2e^{-\sqrt{\sigma}x}

T(t)=c3eασtT(t)=c_3e^{\alpha\sigma t}

For arbitrary constants c1, c2 and c3.

If σ = 0, the equations simplify to;

X(x)=0;T(t)=0X''(x)=0;T'(t)=0

Whose general solutions are;

X(x)=c1+c2xX(x)=c_1+c_2x

T(t)=c3T(t)=c_3

Therefore the general solutions to the heat equation are;

u(x,t)=(c1eσx+c2eσx)c3eασtu(x,t)=(c_1e^{\sqrt{\sigma}x}+c_2e^{-\sqrt{\sigma}x})c_3e^{\alpha\sigma t}

(σ0\sigma\neq0 )

u(x,t)=(c1+c2x)c3u(x,t)=(c_1+c_2x)c_3

(σ=0\sigma=0 )

Subject the solutions to the initial condition;

u(x,0)=g(x)=(c1eσx+c2eσx)c3u(x,0)=g(x)=(c_1e^{\sqrt{\sigma}x}+c_2e^{-\sqrt{\sigma}x})c_3

The particular solution if g(x)=0;

g(x)=0=(c1eσx+c2eσx)c3g(x)=0=(c_1e^{\sqrt{\sigma}x}+c_2e^{-\sqrt{\sigma}x})c_3

Meaning;

c1,c2,c3=0c_1,c_2 ,c_3=0

Hence;

u(x,t)=0u(x,t)=0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS