Question #252272

Determine the laplace transform

i) ∂2u(x,t)/∂t2

ii)∂2u(x,t)/∂x2

1
Expert's answer
2021-10-22T00:39:26-0400

i)

L(u(x,t))=0estu(x,t)dt=U(x,s)L(u(x,t))=\int^{\infin}_0 e^{-st}u(x,t)dt=U(x,s)


L(ut(x,t))=0estut(x,t)dt=estu(x,t)0+s0estu(x,t)dt=L(u_t(x,t))=\int^{\infin}_0 e^{-st}u_t(x,t)dt=e^{-st}u(x,t)|^{\infin}_0+s\int^{\infin}_0 e^{-st}u(x,t)dt=

=sU(x,s)u(x,0)=sU(x,s)-u(x,0)


L(utt(x,t))=s2U(x,s)su(x,0)ut(x,0)L(u_{tt}(x,t))=s^2U(x,s)-su(x,0)-u_t(x,0)


ii)

L(ux(x,t))=0estux(x,t)dt=Ux(x,s)L(u_x(x,t))=\int^{\infin}_0 e^{-st}u_x(x,t)dt=U_x(x,s)


L(uxx(x,t))=0estuxx(x,t)dt=Uxx(x,s)L(u_{xx}(x,t))=\int^{\infin}_0 e^{-st}u_{xx}(x,t)dt=U_{xx}(x,s)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS