Determine the laplace transform
i) ∂2u(x,t)/∂t2
ii)∂2u(x,t)/∂x2
i)
L(u(x,t))=∫0∞e−stu(x,t)dt=U(x,s)L(u(x,t))=\int^{\infin}_0 e^{-st}u(x,t)dt=U(x,s)L(u(x,t))=∫0∞e−stu(x,t)dt=U(x,s)
L(ut(x,t))=∫0∞e−stut(x,t)dt=e−stu(x,t)∣0∞+s∫0∞e−stu(x,t)dt=L(u_t(x,t))=\int^{\infin}_0 e^{-st}u_t(x,t)dt=e^{-st}u(x,t)|^{\infin}_0+s\int^{\infin}_0 e^{-st}u(x,t)dt=L(ut(x,t))=∫0∞e−stut(x,t)dt=e−stu(x,t)∣0∞+s∫0∞e−stu(x,t)dt=
=sU(x,s)−u(x,0)=sU(x,s)-u(x,0)=sU(x,s)−u(x,0)
L(utt(x,t))=s2U(x,s)−su(x,0)−ut(x,0)L(u_{tt}(x,t))=s^2U(x,s)-su(x,0)-u_t(x,0)L(utt(x,t))=s2U(x,s)−su(x,0)−ut(x,0)
ii)
L(ux(x,t))=∫0∞e−stux(x,t)dt=Ux(x,s)L(u_x(x,t))=\int^{\infin}_0 e^{-st}u_x(x,t)dt=U_x(x,s)L(ux(x,t))=∫0∞e−stux(x,t)dt=Ux(x,s)
L(uxx(x,t))=∫0∞e−stuxx(x,t)dt=Uxx(x,s)L(u_{xx}(x,t))=\int^{\infin}_0 e^{-st}u_{xx}(x,t)dt=U_{xx}(x,s)L(uxx(x,t))=∫0∞e−stuxx(x,t)dt=Uxx(x,s)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments