Question #252265

use the laplace transform method to solve the boundary value problem

∂u/∂t=3(∂u/∂x), u(x,0)=4e-2x

1
Expert's answer
2021-10-21T10:18:25-0400

Appliing Laplase transworm with respect to t we have

U(x,p)p-u(x,0)=3U(x,p)x3\cdot U(x,p)'_x

or

ddxU(x,p)=U(x,p)p343e2x\frac{d}{dx}U(x,p)=U(x,p)\cdot \frac{p}{3}-\frac{4}{3}\cdot e^{-2x}

homogeneous equation has the general solution

U(x,p)=Cepx3U(x,p)=Ce^\frac{px}{3}

Let C=C(x).

Then

C(x)epx3=43e2x;C'(x)e^\frac{px}{3}=-\frac{4}{3}\cdot e^{-2x};

C'(x)=43e(2p3)x-\frac{4}{3}\cdot e^{(-2-\frac{p}{3})x}

C(x)=46+pe(2p3)xC(x)=\frac{4}{6+p}e^{(-2-\frac{p}{3})x}

U(x,p)=46+pe2x\frac{4}{6+p}e^{-2x}

Using table of Laplase transform we have

4p+64e6t\frac{4}{p+6}\doteqdot 4\cdot e^{-6t}

Finalyy we have

u(x,t)=4e(6t+2x)4\cdot e^{-(6t+2x)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS