Question #252281

Find the characteristic values and the characteristic functions of the sturn_ liouville problem.

d/dx[x(dy/dx)]+(λ/x)y=0

y1(1)=0,y1(e2x)=0 where λ is nonnegative


1
Expert's answer
2021-10-26T09:38:08-0400

if λ=0\lambda=0 :

xy=c1xy'=c_1

y=c1lnx+c2y=c_1lnx+c_2

y(1)=c1=0y'(1)=c_1=0

y=c1y=c_1


if λ>0\lambda>0 :

λ=k2\lambda=k^2 with k>0k>0

x2y+xy+k2y=0x^2y''+xy'+k^2y=0

an Euler equation with indicial equation:

r2+k2=(rik)(r+ik)=0r^2+k^2=(r-ik)(r+ik)=0

y=c1cos(klnx)+c2sin(klnx)y=c_1cos(klnx)+c_2sin(klnx)


y=c1sin(klnx)/x+c2cos(klnx)/xy'=-c_1sin(klnx)/x+c_2cos(klnx)/x

y(1)=c2=0y'(1)=c_2=0

y(e2x)=c1sin(2kx)/e2x=0y'(e^{2x})=-c_1sin(2kx)/e^{2x}=0

2kx=πn2kx=\pi n

k=πn/(2x)k=\pi n/(2x)


λn=(πn/(2x))2\lambda_n=(\pi n/(2x))^2

yn=cos(πnlnx/2x)y_n=cos(\pi nlnx/2x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS