if λ=0 :
xy′=c1
y=c1lnx+c2
y′(1)=c1=0
y=c1
if λ>0 :
λ=k2 with k>0
x2y′′+xy′+k2y=0
an Euler equation with indicial equation:
r2+k2=(r−ik)(r+ik)=0
y=c1cos(klnx)+c2sin(klnx)
y′=−c1sin(klnx)/x+c2cos(klnx)/x
y′(1)=c2=0
y′(e2x)=−c1sin(2kx)/e2x=0
2kx=πn
k=πn/(2x)
λn=(πn/(2x))2
yn=cos(πnlnx/2x)
Comments