Use the method of separation of variables to determine the general solution to the one dimensional heat equation ∂2u/∂x2=1/α(∂u/∂t),0≤ x≤ l,t≥0 subject to the boundary conditions u(0,t)=u((l,t)=0 and the initial condition u(x,0)=f(x). Determine the particular solution when f(x)=x2
1
Expert's answer
2021-10-19T16:40:02-0400
u(x,t)=X(x)T(t)
X(x)T′(t)=1/α⋅T(t)X′′(x)
αT′(t)/T(t)=X′′(x)/X(x)=−λ
T′(t)=−λT(t)/α
X′′(x)+λX(x)=0
X(0)=0,X(l)=0
λ>0
X(x)=c1cos(λx)+c2sin(λx)
0=X(0)=c1
0=X(l)=c2sin(lλ)
sin(lλ)=0⟹lλ=nπ,n=1,2,3,...
λn=(lnπ)2,Xn(x)=sin(lnπx)
λ=0
X(x)=c1+c2x
0=X(0)=c1,0=X(l)=c2l⟹c2=0
So, in this case the only solution is the trivial solution and so λ=0 is not an eigenvalue for this boundary value problem.
Comments