Question #252243

Use the method of separation of variables to determine the general solution to the one dimensional heat equation 2u/∂x2=1/α(∂u/∂t),0≤ x l,t≥0 subject to the boundary conditions u(0,t)=u((l,t)=0 and the initial condition u(x,0)=f(x). Determine the particular solution when f(x)=x2

1
Expert's answer
2021-10-19T16:40:02-0400

u(x,t)=X(x)T(t)u(x,t)=X(x)T(t)

X(x)T(t)=1/αT(t)X(x)X(x)T'(t)=1/\alpha\cdot T(t)X''(x)

αT(t)/T(t)=X(x)/X(x)=λ\alpha T'(t)/T(t)=X''(x)/X(x)=-\lambda


T(t)=λT(t)/αT'(t)=-\lambda T(t)/\alpha

X(x)+λX(x)=0X''(x)+\lambda X(x)=0

X(0)=0,X(l)=0X(0)=0,X(l)=0


λ>0\lambda>0

X(x)=c1cos(λx)+c2sin(λx)X(x)=c_1cos(\sqrt{\lambda}x)+c_2sin(\sqrt{\lambda}x)

0=X(0)=c10=X(0)=c_1

0=X(l)=c2sin(lλ)0=X(l)=c_2sin(l\sqrt{\lambda})

sin(lλ)=0    lλ=nπ, n=1,2,3,...sin(l\sqrt{\lambda})=0\implies l\sqrt{\lambda}=n\pi,\ n=1,2,3,...

λn=(nπl)2, Xn(x)=sin(nπxl)\lambda_n=(\frac{n\pi}{l})^2,\ X_n(x)=sin(\frac{n\pi x}{l})


λ=0\lambda=0

X(x)=c1+c2xX(x)=c_1+c_2x

0=X(0)=c1, 0=X(l)=c2l    c2=00=X(0)=c_1,\ 0=X(l)=c_2l\implies c_2=0

So, in this case the only solution is the trivial solution and so λ=0 is not an eigenvalue for this boundary value problem.


λ<0\lambda<0

X(x)=c1cosh(λx)+c2sinh(λx)X(x)=c_1cosh(\sqrt{-\lambda}x)+c_2sinh(\sqrt{-\lambda}x)

0=X(0)=c10=X(0)=c_1

0=X(l)=c2sinh(lλ)0=X(l)=c_2sinh(l\sqrt{-\lambda})

λn=(nπl)2, Xn(x)=sin(nπxl)\lambda_n=(\frac{n\pi}{l})^2,\ X_n(x)=sin(\frac{n\pi x}{l})


for the time differential equation:

T(t)=cekλnt=cek(nπl)2tT(t)=ce^{-k\lambda_nt}=ce^{-k(\frac{n\pi}{l})^2t}


the general solution:

un(x,t)=Bnsin(nπxl)ek(nπl)2tu_n(x,t)=B_nsin(\frac{n\pi x}{l})e^{-k(\frac{n\pi}{l})^2t}


where


Bn=2l0lf(x)sin(nπxl)dx=2l0lx2sin(nπxl)dx=B_n=\frac{2}{l}\int^l_0 f(x)sin(\frac{n\pi x}{l})dx=\frac{2}{l}\int^l_0 x^2sin(\frac{n\pi x}{l})dx=


=2n3π3(2πlnxsin(nπx/l)+(2l2n2π2x2)cos(nπx/l))0l==\frac{2}{n^3\pi^3}(2\pi lnxsin(n\pi x/l)+(2l^2-n^2\pi^2x^2)cos(n\pi x/l))|^l_0=


=2n3π3((2l2n2π2l2)cos(nπ)2l2)=\frac{2}{n^3\pi^3}((2l^2-n^2\pi^2l^2)cos(n\pi )-2l^2)


for odd n:

un(x,t)=2l2n3π3((4+n2π2)sin(nπxl)ek(nπl)2tu_n(x,t)=-\frac{2l^2}{n^3\pi^3}((4+n^2\pi^2)sin(\frac{n\pi x}{l})e^{-k(\frac{n\pi}{l})^2t}


for even n:

un(x,t)=2l2nπu_n(x,t)=-\frac{2l^2}{n\pi}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS