Answer to Question #252293 in Differential Equations for pde

Question #252293

Determine the general solution to the lagrange equation

y2zp-x2zq=x2y


1
Expert's answer
2021-10-28T11:05:25-0400

y2zpx2zq=x2yDivide through by z to obtainy2px2q=x2yzThe subsidiary equation is dxy2=dyx2=zdzx2yTaking the the first equationdxy2=dyx2Integrating both sides,we havexy2=yx2+c1    c1=xy2+yx2Next, we take another pair of ratiosdxy2=zdzx2yIntegrating, we havexy2=z22x2y+c2    c2=xy2z22x2yHence the general solution isϕ(xy2+yx2),xy2z22x2y=0\displaystyle y^2zp - x^2zq=x^2y\\ \text{Divide through by z to obtain}\\ y^2p-x^2q=\frac{x^2y}{z}\\ \text{The subsidiary equation is }\\ \frac{dx}{y^2} =\frac{dy}{-x^2}=\frac{zdz}{x^2y}\\ \text{Taking the the first equation}\\ \frac{dx}{y^2} =\frac{dy}{-x^2}\\ \text{Integrating both sides,we have}\\ \frac{x}{y^2}= -\frac{y}{x^2}+c_1\\ \implies c_1 = \frac{x}{y^2}+ \frac{y}{x^2}\\ \text{Next, we take another pair of ratios}\\ \frac{dx}{y^2}=\frac{zdz}{x^2y}\\ \text{Integrating, we have}\\ \frac{x}{y^2}=\frac{z^2}{2x^2y}+c_2\\ \implies c_2 = \frac{x}{y^2}-\frac{z^2}{2x^2y}\\ \text{Hence the general solution is}\\ \phi (\frac{x}{y^2}+ \frac{y}{x^2}), \frac{x}{y^2}-\frac{z^2}{2x^2y}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment