M=2x2−2y2+2xy
dydM=−4y+2x=2x−4y
N=x2−2y
dxdN=2x
Clearly;
dydM=dxdN
The equation is not exact.
Use e2x as the integrating factor to make the equation exact.
The solution will be ;
U(x,y)=∫e2x(x2−2y)dy
U(x,y)=e2xx2∫1dy−2e2x∫ydy
U(x,y)=x2e2xy−e2xy2+C
Comments
Leave a comment