( x cos ( x + y ) + sin ( x + y ) ) d x + x cos ( x + y ) d y = 0 (x \cos ( x + y ) + \sin ( x + y )) dx+ x\cos (x+y) dy=0 ( x cos ( x + y ) + sin ( x + y )) d x + x cos ( x + y ) d y = 0
∂ P ∂ y = − x sin ( x + y ) + cos ( x + y ) \dfrac{\partial P}{\partial y}=-x\sin(x+y)+\cos(x+y) ∂ y ∂ P = − x sin ( x + y ) + cos ( x + y )
∂ Q ∂ x = cos ( x + y ) − x sin ( x + y ) \dfrac{\partial Q}{\partial x}=\cos(x+y)-x\sin(x+y) ∂ x ∂ Q = cos ( x + y ) − x sin ( x + y )
∂ P ∂ y = − x sin ( x + y ) + cos ( x + y ) = ∂ Q ∂ x \dfrac{\partial P}{\partial y}=-x\sin(x+y)+\cos(x+y)=\dfrac{\partial Q}{\partial x} ∂ y ∂ P = − x sin ( x + y ) + cos ( x + y ) = ∂ x ∂ Q The differential equation
( x cos ( x + y ) + sin ( x + y ) ) d x + x cos ( x + y ) d y = 0 (x \cos ( x + y ) + \sin ( x + y )) dx+ x\cos (x+y) dy=0 ( x cos ( x + y ) + sin ( x + y )) d x + x cos ( x + y ) d y = 0 is an exact equation.
Then we write the system of two differential equations that define the function u ( x , y ) u(x,y) u ( x , y )
{ ∂ u ∂ x = x cos ( x + y ) + sin ( x + y ) ∂ u ∂ y = x cos ( x + y ) \begin{cases}
\dfrac{\partial u}{\partial x}=x \cos ( x + y ) + \sin ( x + y ) \\
\\
\dfrac{\partial u}{\partial y}=x\cos(x+y)
\end{cases} ⎩ ⎨ ⎧ ∂ x ∂ u = x cos ( x + y ) + sin ( x + y ) ∂ y ∂ u = x cos ( x + y ) Integrate the first equation over the variable x x x
u ( x , y ) = ∫ ( x cos ( x + y ) + sin ( x + y ) ) d x + φ ( y ) u(x, y)=\int(x \cos ( x + y ) + \sin ( x + y ))dx+\varphi(y) u ( x , y ) = ∫ ( x cos ( x + y ) + sin ( x + y )) d x + φ ( y )
∫ x cos ( x + y ) d x = x sin ( x + y ) − ∫ sin ( x + y ) d x \int x\cos(x+y)dx=x\sin(x+y)-\int\sin(x+y)dx ∫ x cos ( x + y ) d x = x sin ( x + y ) − ∫ sin ( x + y ) d x
= x sin ( x + y ) + cos ( x + y ) + C 1 =x\sin(x+y)+\cos(x+y)+C_1 = x sin ( x + y ) + cos ( x + y ) + C 1
∫ sin ( x + y ) d x = − cos ( x + y ) + C 2 \int \sin(x+y)dx=-\cos(x+y)+C_2 ∫ sin ( x + y ) d x = − cos ( x + y ) + C 2 Then
u ( x , y ) = ∫ ( x cos ( x + y ) + sin ( x + y ) ) d x + φ ( y ) u(x, y)=\int(x \cos ( x + y ) + \sin ( x + y ))dx+\varphi(y) u ( x , y ) = ∫ ( x cos ( x + y ) + sin ( x + y )) d x + φ ( y )
= x sin ( x + y ) + cos ( x + y ) − cos ( x + y ) + φ ( y ) =x\sin(x+y)+\cos(x+y)-\cos(x+y)+\varphi(y) = x sin ( x + y ) + cos ( x + y ) − cos ( x + y ) + φ ( y )
= x sin ( x + y ) + φ ( y ) =x\sin(x+y)+\varphi(y) = x sin ( x + y ) + φ ( y )
u ( x , y ) = x sin ( x + y ) + φ ( y ) u(x,y)=x\sin(x+y)+\varphi(y) u ( x , y ) = x sin ( x + y ) + φ ( y ) Differentiate with respect to y y y
∂ u ∂ y = x cos ( x + y ) + φ ′ ( y ) = x cos ( x + y ) \dfrac{\partial u}{\partial y}=x\cos(x+y)+\varphi'(y)=x\cos(x+y) ∂ y ∂ u = x cos ( x + y ) + φ ′ ( y ) = x cos ( x + y )
φ ′ ( y ) = 0 \varphi'(y)=0 φ ′ ( y ) = 0
φ ( y ) = − C \varphi(y)=-C φ ( y ) = − C The general solution of the exact differential equation is given by
x sin ( x + y ) = C x\sin(x+y)=C x sin ( x + y ) = C
Comments