(xcos(x+y)+sin(x+y))dx+xcos(x+y)dy=0
∂y∂P=−xsin(x+y)+cos(x+y)
∂x∂Q=cos(x+y)−xsin(x+y)
∂y∂P=−xsin(x+y)+cos(x+y)=∂x∂Q The differential equation
(xcos(x+y)+sin(x+y))dx+xcos(x+y)dy=0 is an exact equation.
Then we write the system of two differential equations that define the function u(x,y)
⎩⎨⎧∂x∂u=xcos(x+y)+sin(x+y)∂y∂u=xcos(x+y) Integrate the first equation over the variable x
u(x,y)=∫(xcos(x+y)+sin(x+y))dx+φ(y)
∫xcos(x+y)dx=xsin(x+y)−∫sin(x+y)dx
=xsin(x+y)+cos(x+y)+C1
∫sin(x+y)dx=−cos(x+y)+C2 Then
u(x,y)=∫(xcos(x+y)+sin(x+y))dx+φ(y)
=xsin(x+y)+cos(x+y)−cos(x+y)+φ(y)
=xsin(x+y)+φ(y)
u(x,y)=xsin(x+y)+φ(y) Differentiate with respect to y
∂y∂u=xcos(x+y)+φ′(y)=xcos(x+y)
φ′(y)=0
φ(y)=−C The general solution of the exact differential equation is given by
xsin(x+y)=C
Comments
Leave a comment