Answer to Question #233790 in Differential Equations for Phyroehan

Question #233790

Find the general/particular solution of the following Differential Equations.

(Exact D.E)


[x Cos ( x + y ) + Sin ( x + y )] dy + x Cos (x+y) dy=0


1
Expert's answer
2021-09-09T09:59:45-0400
(xcos(x+y)+sin(x+y))dx+xcos(x+y)dy=0(x \cos ( x + y ) + \sin ( x + y )) dx+ x\cos (x+y) dy=0


Py=xsin(x+y)+cos(x+y)\dfrac{\partial P}{\partial y}=-x\sin(x+y)+\cos(x+y)

Qx=cos(x+y)xsin(x+y)\dfrac{\partial Q}{\partial x}=\cos(x+y)-x\sin(x+y)


Py=xsin(x+y)+cos(x+y)=Qx\dfrac{\partial P}{\partial y}=-x\sin(x+y)+\cos(x+y)=\dfrac{\partial Q}{\partial x}

The differential equation 


(xcos(x+y)+sin(x+y))dx+xcos(x+y)dy=0(x \cos ( x + y ) + \sin ( x + y )) dx+ x\cos (x+y) dy=0

is an exact equation.

Then we write the system of two differential equations that define the function u(x,y)u(x,y)


{ux=xcos(x+y)+sin(x+y)uy=xcos(x+y)\begin{cases} \dfrac{\partial u}{\partial x}=x \cos ( x + y ) + \sin ( x + y ) \\ \\ \dfrac{\partial u}{\partial y}=x\cos(x+y) \end{cases}

Integrate the first equation over the variable xx


u(x,y)=(xcos(x+y)+sin(x+y))dx+φ(y)u(x, y)=\int(x \cos ( x + y ) + \sin ( x + y ))dx+\varphi(y)

xcos(x+y)dx=xsin(x+y)sin(x+y)dx\int x\cos(x+y)dx=x\sin(x+y)-\int\sin(x+y)dx

=xsin(x+y)+cos(x+y)+C1=x\sin(x+y)+\cos(x+y)+C_1




sin(x+y)dx=cos(x+y)+C2\int \sin(x+y)dx=-\cos(x+y)+C_2

Then


u(x,y)=(xcos(x+y)+sin(x+y))dx+φ(y)u(x, y)=\int(x \cos ( x + y ) + \sin ( x + y ))dx+\varphi(y)


=xsin(x+y)+cos(x+y)cos(x+y)+φ(y)=x\sin(x+y)+\cos(x+y)-\cos(x+y)+\varphi(y)

=xsin(x+y)+φ(y)=x\sin(x+y)+\varphi(y)

u(x,y)=xsin(x+y)+φ(y)u(x,y)=x\sin(x+y)+\varphi(y)

Differentiate with respect to yy


uy=xcos(x+y)+φ(y)=xcos(x+y)\dfrac{\partial u}{\partial y}=x\cos(x+y)+\varphi'(y)=x\cos(x+y)

φ(y)=0\varphi'(y)=0

φ(y)=C\varphi(y)=-C

The general solution of the exact differential equation is given by


xsin(x+y)=Cx\sin(x+y)=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment