Solution;
Check for exactness of the equation;
M=2xy−tany
N=x2−xsec2y
dydM= 2x−sec2y
dxdN=2x−sec2y
Clearly;
dydM=dxdN
The equation is exact.
Solution is given as;
∫y=cMdx+∫ (Terms of N independent of x)dy =C
∫(2xy−tany)dx+0=C
2y∫xdx−tan(y)∫1dx=C
2y×(2x2)−tany(x)=C
The general solution is;
x2y−xtan(y)=C
Comments