Given IVP:
8 x ′ ′ ( t ) + 16 x ′ ( t ) − 5 x ( t ) = 0 8x''(t)+16x'(t)-5x(t)=0 8 x ′′ ( t ) + 16 x ′ ( t ) − 5 x ( t ) = 0
x ( 0 ) = 16 , x ′ ( 0 ) = − 8 x(0)=16,\quad x'(0)=-8 x ( 0 ) = 16 , x ′ ( 0 ) = − 8 The characteristic equation is as follows
8 k 2 + 16 k − 5 = 0 8k^2+16k-5=0 8 k 2 + 16 k − 5 = 0 Roots:
k 1 = − 1 − 26 / 4 , k 1 = − 1 + 26 / 4 k_1=-1-\sqrt{26}/4,\quad k_1=-1+\sqrt{26}/4 k 1 = − 1 − 26 /4 , k 1 = − 1 + 26 /4 General solution of IVP:
x ( t ) = A e k 1 t + B e k 2 t = e − t ( A e − 26 / 4 t + B e 26 / 4 t ) x(t)=Ae^{k_1t}+Be^{k_2t}=e^{-t}(Ae^{-\sqrt{26}/4t}+Be^{\sqrt{26}/4t}) x ( t ) = A e k 1 t + B e k 2 t = e − t ( A e − 26 /4 t + B e 26 /4 t ) The initial conditions give
x ( 0 ) = A + B = 16 x ′ ( 0 ) = − ( A + B ) + 26 / 4 ( − A + B ) = − 8 x(0)=A+B=16\\
x'(0)=-(A+B)+\sqrt{26}/4(-A+B)=-8 x ( 0 ) = A + B = 16 x ′ ( 0 ) = − ( A + B ) + 26 /4 ( − A + B ) = − 8 A = − 8 / 13 ( − 13 + 26 ) , B = 8 / 13 ( 13 + 26 ) A=-8/13(-13+\sqrt{26}), \quad B=8/13(13+\sqrt{26}) A = − 8/13 ( − 13 + 26 ) , B = 8/13 ( 13 + 26 ) Finally,
x ( t ) = e − t ( − 8 / 13 ( − 13 + 26 ) e − 26 / 4 t + 8 / 13 ( 13 + 26 ) e 26 / 4 t ) x(t)=e^{-t}\Big(-8/13(-13+\sqrt{26})e^{-\sqrt{26}/4t}\\+8/13(13+\sqrt{26})e^{\sqrt{26}/4t}\Big) x ( t ) = e − t ( − 8/13 ( − 13 + 26 ) e − 26 /4 t + 8/13 ( 13 + 26 ) e 26 /4 t )
Comments