Solution
1.
Use Method of seperation of variables.
8 ( 8 − y 2 ) 1 2 l n ( x ) d x 8(8-y^2)^{\frac12}ln(x)dx 8 ( 8 − y 2 ) 2 1 l n ( x ) d x =-(8y-5)xdy
Rewrite as
8 ( 8 − y 2 ) 1 2 l n x d x 8(8-y^2)^{\frac12}lnxdx 8 ( 8 − y 2 ) 2 1 l n x d x =(5-8y)xdy
By separation,
8 l n x x d x = 5 − 8 y ( 8 − y 2 ) 1 2 d y \frac{8lnx}{x}dx=\frac{5-8y}{(8-y^2)^{\frac12}}dy x 8 l n x d x = ( 8 − y 2 ) 2 1 5 − 8 y d y
Rewrite as
8 l n ( x ) x d x = 5 8 − y 2 d y − 8 ( y 8 − y 2 ) d y \frac{8ln(x)}{x}dx=\frac{5}{\sqrt{8-y^2}}dy-8(\frac{y}{\sqrt{8-y^2}})dy x 8 l n ( x ) d x = 8 − y 2 5 d y − 8 ( 8 − y 2 y ) d y
Integrate both sides:
4 l n 2 ( x ) + C = 5 a r c s i n ( y 2 2 ) + 8 8 − y 2 4ln^2(x)+C=5arcsin(\frac{y}{2\sqrt2})+8\sqrt{8-y^2} 4 l n 2 ( x ) + C = 5 a rcs in ( 2 2 y ) + 8 8 − y 2
2)
Equation is homogeneous.
Take y=vx
d y d x = v + x d v d x \frac{dy}{dx}=v+x\frac{dv}{dx} d x d y = v + x d x d v
By substitution,
v + x d v d x = 1 − v 2 + v v+x\frac{dv}{dx}=\sqrt{1-v^2}+v v + x d x d v = 1 − v 2 + v
By simplication,
x d v d x = 1 − v 2 x\frac{dv}{dx}=\sqrt{1-v^2} x d x d v = 1 − v 2
Separate by variables:
1 1 − v 2 d v = 1 x d x \frac{1}{\sqrt{1-v^2}}dv=\frac1xdx 1 − v 2 1 d v = x 1 d x
Integrate both sides:
arcsin(v)=ln(x)+C
But v = y x v=\frac yx v = x y ,Replace back:
a r c s i n ( y x ) = l n ( x ) + C arcsin(\frac yx)=ln(x)+C a rcs in ( x y ) = l n ( x ) + C
Comments