Question #225226

Solve the following differential equations:

  1. 8(8-y2)1/2 ln xdx + (8y-5) xdy = 0
  2. dy/dx = ((x2 - y2)/x2))1/2 + y/x
1
Expert's answer
2021-08-12T04:45:46-0400

Solution

1.

Use Method of seperation of variables.

8(8y2)12ln(x)dx8(8-y^2)^{\frac12}ln(x)dx =-(8y-5)xdy

Rewrite as

8(8y2)12lnxdx8(8-y^2)^{\frac12}lnxdx =(5-8y)xdy

By separation,

8lnxxdx=58y(8y2)12dy\frac{8lnx}{x}dx=\frac{5-8y}{(8-y^2)^{\frac12}}dy

Rewrite as

8ln(x)xdx=58y2dy8(y8y2)dy\frac{8ln(x)}{x}dx=\frac{5}{\sqrt{8-y^2}}dy-8(\frac{y}{\sqrt{8-y^2}})dy

Integrate both sides:

4ln2(x)+C=5arcsin(y22)+88y24ln^2(x)+C=5arcsin(\frac{y}{2\sqrt2})+8\sqrt{8-y^2}

2)

Equation is homogeneous.

Take y=vx

dydx=v+xdvdx\frac{dy}{dx}=v+x\frac{dv}{dx}

By substitution,

v+xdvdx=1v2+vv+x\frac{dv}{dx}=\sqrt{1-v^2}+v

By simplication,

xdvdx=1v2x\frac{dv}{dx}=\sqrt{1-v^2}

Separate by variables:

11v2dv=1xdx\frac{1}{\sqrt{1-v^2}}dv=\frac1xdx

Integrate both sides:

arcsin(v)=ln(x)+C

But v=yxv=\frac yx ,Replace back:

arcsin(yx)=ln(x)+Carcsin(\frac yx)=ln(x)+C




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS