The homogeneous equation
2y′′′+y′′−8y′−4y=0 The characteristic equation
2r3+r2−8r−4=0
r2(2r+1)−4(2r+1)=0
(2r+1)(r+2)(r−2)=0
r1=−21,r2=−2,r3=2 The general solution of the homogeneous differential equation is
yh=C1e−x/2+C2e−2x+C3e2x
7−2e−x−cos2(2x)=7−2e−x−21−21cos(4x)
=213−2e−x−21cos(4x) Find the particular solution of the nonhomogeneous differential equation
yp=A+Be−x+Ccos(4x)+Dsin(4x)
yp′=−Be−x−4Csin(4x)+4Dcos(4x)
yp′′=Be−x−16Ccos(4x)−16Dsin(4x)
yp′′′=−Be−x+64Csin(4x)−64Dcos(4x)
Substitute
−2Be−x+128Csin(4x)−128Dcos(4x)
+Be−x−16Ccos(4x)−16Dsin(4x)
+8Be−x+32Csin(4x)−32Dcos(4x)
−4A−4Be−x−4Ccos(4x)−4Dsin(4x)
=213−2e−x−21cos(4x)
A=−813
B=−32
D=8C
C=26001
D=3251 Then
yp=−813−32e−x+26001cos(4x)+3251sin(4x)
The general solution of the nonhomogeneous differential equation is
y=C1e−x/2+C2e−2x+C3e2x
−813−32e−x+26001cos(4x)+3251sin(4x)
Comments