Question #225224

Solve the differential equation 2y'''+ y''- 8y' - 4y = 7 - 2e-x - cos2 (2x).


1
Expert's answer
2021-08-11T19:20:45-0400

The homogeneous equation


2y+y8y4y=02y'''+y''-8y'-4y=0

The characteristic equation


2r3+r28r4=02r^3+r^2-8r-4=0

r2(2r+1)4(2r+1)=0r^2(2r+1)-4(2r+1)=0

(2r+1)(r+2)(r2)=0(2r+1)(r+2)(r-2)=0

r1=12,r2=2,r3=2r_1=-\dfrac{1}{2}, r_2=-2, r_3=2

The general solution of the homogeneous differential equation is


yh=C1ex/2+C2e2x+C3e2xy_h=C_1e^{-x/2}+C_2e^{-2x}+C_3e^{2x}


72excos2(2x)=72ex1212cos(4x)7-2e^{-x}-\cos^2(2x)=7-2e^{-x}-\dfrac{1}{2}-\dfrac{1}{2}\cos(4x)

=1322ex12cos(4x)=\dfrac{13}{2}-2e^{-x}-\dfrac{1}{2}\cos(4x)

Find the particular solution of the nonhomogeneous differential equation


yp=A+Bex+Ccos(4x)+Dsin(4x)y_p=A+Be^{-x}+C\cos(4x)+D\sin(4x)

yp=Bex4Csin(4x)+4Dcos(4x)y_p'=-Be^{-x}-4C\sin(4x)+4D\cos(4x)

yp=Bex16Ccos(4x)16Dsin(4x)y_p''=Be^{-x}-16C\cos(4x)-16D\sin(4x)

yp=Bex+64Csin(4x)64Dcos(4x)y_p'''=-Be^{-x}+64C\sin(4x)-64D\cos(4x)

Substitute


2Bex+128Csin(4x)128Dcos(4x)-2Be^{-x}+128C\sin(4x)-128D\cos(4x)

+Bex16Ccos(4x)16Dsin(4x)+Be^{-x}-16C\cos(4x)-16D\sin(4x)

+8Bex+32Csin(4x)32Dcos(4x)+8Be^{-x}+32C\sin(4x)-32D\cos(4x)

4A4Bex4Ccos(4x)4Dsin(4x)-4A-4Be^{-x}-4C\cos(4x)-4D\sin(4x)

=1322ex12cos(4x)=\dfrac{13}{2}-2e^{-x}-\dfrac{1}{2}\cos(4x)

A=138A=-\dfrac{13}{8}

B=23B=-\dfrac{2}{3}

D=8CD=8C

C=12600C=\dfrac{1}{2600}

D=1325D=\dfrac{1}{325}

Then


yp=13823ex+12600cos(4x)+1325sin(4x)y_p=-\dfrac{13}{8}-\dfrac{2}{3}e^{-x}+\dfrac{1}{2600}\cos(4x)+\dfrac{1}{325}\sin(4x)

The general solution of the nonhomogeneous differential equation is


y=C1ex/2+C2e2x+C3e2xy=C_1e^{-x/2}+C_2e^{-2x}+C_3e^{2x}

13823ex+12600cos(4x)+1325sin(4x)-\dfrac{13}{8}-\dfrac{2}{3}e^{-x}+\dfrac{1}{2600}\cos(4x)+\dfrac{1}{325}\sin(4x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS