Question #224760

Find the general solution of the following

2x2y''-xy'+(x-5)y=0



1
Expert's answer
2021-08-16T14:02:43-0400

Find the general solution of the following

2x2y''-xy'+(x-5)y=0

Solution:

The general solution of the equation

x2y+axy+(bxn+c)y=0x^2y''+axy'+(bx^n+c)y=0, n0n\neq 0

is:

y=x1a2[C1Jν(2nbxn2)+C2Yν(2nbxn2)]y=x^\frac{1-a}{2}[C_1J_\nu (\frac2n\sqrt{b}x^\frac n2)+C_2Y_\nu (\frac2n\sqrt{b}x^\frac n2)] ,

where ν=1n(1a)24c\nu=\frac 1n\sqrt{(1-a)^2-4c} , C1C_1 and C2C_2 are arbitrary constants;

Jν(z)J_\nu (z) and Yν(z)Y_\nu(z) are the Bessel functions of the first and second kind.

References :

Kamke, E., Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition, Chapman & Hall/CRC, Boca Raton, 2003.


In our case:

2x2yxy+(x5)y=02x^2y''-xy'+(x-5)y=0

divided by 2:

x2y12xy+(12x52)y=0x^2y''-\frac12xy'+(\frac12x-\frac52)y=0

a=12a=-\frac12 , b=12b=\frac12 , c=52c=-\frac52 , n=1n=1, ν=94+10=72\nu=\sqrt{\frac94+10}=\frac72 .

Solution:

y=x34[C1J72(x2)+C2Y72(x2)]y=x^\frac{3}{4}[C_1J_\frac72 (\sqrt{\frac{x}{2}})+C_2Y_\frac72 (\sqrt{\frac{x}{2}})] ,

where C1C_1 and C2C_2 are arbitrary constants;

Jν(z)J_\nu (z) and Yν(z)Y_\nu(z) are the Bessel functions of the first and second kind.

Answer: y=x34[C1J72(x2)+C2Y72(x2)]y=x^\frac{3}{4}[C_1J_\frac72 (\sqrt{\frac{x}{2}})+C_2Y_\frac72 (\sqrt{\frac{x}{2}})] .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS