where ν=n1(1−a)2−4c , C1 and C2 are arbitrary constants;
Jν(z) and Yν(z) are the Bessel functions of the first and second kind.
References :
Kamke, E., Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition, Chapman & Hall/CRC, Boca Raton, 2003.
In our case:
2x2y′′−xy′+(x−5)y=0
divided by 2:
x2y′′−21xy′+(21x−25)y=0
a=−21 , b=21 , c=−25 , n=1, ν=49+10=27 .
Solution:
y=x43[C1J27(2x)+C2Y27(2x)] ,
where C1 and C2 are arbitrary constants;
Jν(z) and Yν(z) are the Bessel functions of the first and second kind.
Comments