Question #225222

Determine the general solution of 8d2y/dx2 - 2dy/dx + 8y = cos(8x) + 8x3 - 3x.


1
Expert's answer
2021-08-12T08:10:35-0400

First, we have to find the complementary function.To do this, we sole the equation:8d2ydx22dydx+8y=0The auxiliary equation is:8m22m+8=0m=18±378iHence, the complementary function, yc=ex8(c1cos(37x8)+c2sin(37x8))To find the particular integral,yp, we assume the general form of the RHSyp=Ccos(8x)+Dsin(8x)+Ex3+Fx2+Gx+Hdydx=8Csin(8x)+8Dcos(8x)+3Ex2+2Fx+Gd2ydx2=64Ccos(8x)64Dsin(8x)+6Ex+2FSubstituting these into the given equation, we have,8(64Ccos(8x)64Dsin(8x)+6Ex+2F)2(8Csin(8x)+8Dcos(8x)+3Ex2+2Fx+G)+8(Ccos(8x)+Dsin(8x)+Ex3+Fx2+Gx+H)=cos(8x)+8x33x(504C16D)cos(8x)+(504D+16C)sin(8x)+8Ex3+(8F6E)x2+(8G4F+48E)x+8H2G+16F=cos(8x)+8x33xBy comparing coefficients on both sides,504C16D=116C504D=08E=88F6E=08G4F+48E=38H2G+16F=0By solving the equations simultaneously, we have,C=6331784,D=115892,E=1,F=34,G=6,H=3Hence, yp=6331784cos(8x)115892sin(8x)+x3+3x246x3The general solution is given by,y=yc+ypy=ex8(c1cos(37x8)+c2sin(37x8))6331784cos(8x)115892sin(8x)+x3+3x246x3\textsf{First, we have to find the complementary function.}\\ \textsf{To do this, we sole the equation:}\\ 8\frac{d^2y}{dx^2}-2\frac{dy}{dx}+8y=0\\ \textsf{The auxiliary equation is:}\\ 8m^2-2m+8=0\\ m=\frac{1}{8}\pm\frac{3\sqrt7}{8}i\\ \textsf{Hence, the complementary function, } \\ y_c=e^{\frac x8}(c_1cos(\frac{3\sqrt7x}{8})+c_2sin(\frac{3\sqrt7x}{8}))\\ \textsf{To find the particular integral}, y_p,\\ \textsf{ we assume the general form of the RHS}\\ y_p=Ccos(8x) + Dsin(8x)+Ex^3+Fx^2+Gx+H\\ \frac{dy}{dx}=-8Csin(8x)+8Dcos(8x)+3Ex^2+2Fx+G\\ \frac{d^2y}{dx^2}=-64Ccos(8x)-64Dsin(8x)+6Ex+2F\\ \textsf{Substituting these into the given equation, we have,}\\ 8(-64Ccos(8x)-64Dsin(8x)+6Ex+2F)\\ -2(-8Csin(8x)+8Dcos(8x)+3Ex^2+2Fx+G)\\ +8(Ccos(8x) + Dsin(8x)+Ex^3+Fx^2+Gx+H)\\ =cos(8x)+8x^3-3x\\ (-504C-16D)cos(8x)+(-504D+16C)sin(8x)\\ +8Ex^3+(8F-6E)x^2+(8G-4F+48E)x\\+8H-2G+16F\\ =cos(8x)+8x^3-3x\\ \textsf{By comparing coefficients on both sides,} -504C-16D =1\\ 16C-504D =0\\ 8E=8\\ 8F-6E=0\\ 8G-4F+48E=-3\\ 8H-2G+16F=0\\ \textsf{By solving the equations simultaneously, we have,}\\ C=\frac{-63}{31784},D=\frac{-1}{15892},E=1, F=\frac34,G=-6,H=-3\\ \textsf{Hence, } y_p=-\frac{63}{31784}cos(8x)-\frac{1}{15892}sin(8x)+x^3+\frac{3x^2}{4}-6x-3\\ \textsf{The general solution is given by,}\\ y=y_c+y_p\\ y=e^{\frac x8}(c_1cos(\frac{3\sqrt7x}{8})+c_2sin(\frac{3\sqrt7x}{8}))-\frac{63}{31784}cos(8x)-\frac{1}{15892}sin(8x)+x^3+\frac{3x^2}{4}-6x-3\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS