(D2+3DD′+2D′2)z=12xy.
D2+3DD′+2D′2=(D+D′)(D+2D′)
(D2+3DD′+2D′2)z=(D+D′)(D+2D′)z
(D+D′)(D+2D′)z=12xy
The auxiliary equation of the given equation is
(k+1)(k+2)=0
k1=−1,k2=−2 Than the complementary function of the given equation is
u=φ1(y−x)+φ2(y−2x) Than partial integral
P.I.=(D+D′)(D+2D′)1(12xy)
=D(1+DD′)D(1+D2D′)1(12xy)
=D21[1+DD′]−1[1+D2D′]−1(12xy)
1+t1=1−t+t2−t3+t4−t5+...,∣t∣<1
P.I.=D21(1−DD′+...)(1−D2D′+...)(12xy)
=D21(1−D3D′+D22D′2+...)(12xy)
=D21(12xy−D3∂y∂(12xy)
+D22∂y2∂2(12xy)+...)
=D21(12xy−D36x+D22(0)+...)
=D21(12xy−36∫xdx)
=D1(∫(12xy−18x2)dx)
=D1(6x2y−6x3)=∫(6x2y−6x3)dx
=2x3y−23x4
P.I.=2x3y−23x4
z=φ1(y−x)+φ2(y−2x)+2x3y−23x4 where φ1 and φ2 are arbitrary functions.
Comments
Leave a comment