Answer to Question #218632 in Differential Equations for rahul

Question #218632
Particular integral of (D^2 +3DD' + 2D'^2) = 12xy
1
Expert's answer
2021-07-19T05:42:13-0400
(𝐷2+3DD+2𝐷2)𝑧=12𝑥𝑦.(𝐷^ 2 +3DD'+ 2𝐷'^2)𝑧 = 12𝑥𝑦.

𝐷2+3DD+2𝐷2=(D+D)(D+2D)𝐷^ 2 +3DD'+2 𝐷'^2=(D+D')(D+2D')

(𝐷2+3DD+2𝐷2)𝑧=(D+D)(D+2D)z(𝐷^ 2 +3DD'+ 2𝐷'^2)𝑧 =(D+D')(D+2D')z

(D+D)(D+2D)z=12xy(D+D')(D+2D')z=12xy

The auxiliary equation of the given equation is


(k+1)(k+2)=0(k+1)(k+2)=0

k1=1,k2=2k_1=-1, k_2=-2

Than the complementary function of the given equation is


u=φ1(yx)+φ2(y2x)u=\varphi_1(y-x)+\varphi_2(y-2x)

Than partial integral


P.I.=1(D+D)(D+2D)(12xy)P.I.=\dfrac{1}{(D+D')(D+2D')}(12xy)

=1D(1+DD)D(1+2DD)(12xy)=\dfrac{1}{D(1+\dfrac{D'}{D})D(1+\dfrac{2D'}{D})}(12xy)

=1D2[1+DD]1[1+2DD]1(12xy)=\dfrac{1}{D^2}\bigg[1+\dfrac{D'}{D}\bigg]^{-1}\bigg[1+\dfrac{2D'}{D}\bigg]^{-1}(12xy)

11+t=1t+t2t3+t4t5+...,t<1\dfrac{1}{1+t}=1-t+t^2-t^3+t^4-t^5+..., |t|<1

P.I.=1D2(1DD+...)(12DD+...)(12xy)P.I.=\dfrac{1}{D^2}\bigg(1-\dfrac{D'}{D}+...\bigg)\bigg(1-\dfrac{2D'}{D}+...\bigg)(12xy)

=1D2(13DD+2D2D2+...)(12xy)=\dfrac{1}{D^2}\bigg(1-\dfrac{3D'}{D}+\dfrac{2D'^2}{D^2}+...\bigg)(12xy)

=1D2(12xy3Dy(12xy)=\dfrac{1}{D^2}\bigg(12xy-\dfrac{3}{D}\dfrac{\partial}{\partial y}(12xy)

+2D22y2(12xy)+...)+\dfrac{2}{D^2}\dfrac{\partial^2}{\partial y^2}(12xy)+...\bigg)

=1D2(12xy36Dx+2D2(0)+...)=\dfrac{1}{D^2}\bigg(12xy-\dfrac{36}{D}x+\dfrac{2}{D^2}(0)+...\bigg)

=1D2(12xy36xdx)=\dfrac{1}{D^2}\bigg(12xy-36\int xdx\bigg)

=1D((12xy18x2)dx)=\dfrac{1}{D}\bigg(\int(12xy-18x^2)dx\bigg)

=1D(6x2y6x3)=(6x2y6x3)dx=\dfrac{1}{D}(6x^2y-6x^3)=\int(6x^2y-6x^3)dx

=2x3y32x4=2x^3y-\dfrac{3}{2}x^4

P.I.=2x3y32x4P.I.=2x^3y-\dfrac{3}{2}x^4

z=φ1(yx)+φ2(y2x)+2x3y32x4z=\varphi_1(y-x)+\varphi_2(y-2x)+2x^3y-\dfrac{3}{2}x^4

where φ1\varphi_1 and φ2\varphi_2 are arbitrary functions.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment