Question #218258
1.y(3x^3-x+y)dx+x^2(1-x^2)dy=0
2.y(2x+y^2)dx+x(y^2-x)dy=0
1
Expert's answer
2021-07-22T12:06:58-0400

1.

Solution;

Rewrite the solution as;

dydxx2(1x2)+(3yx3xy+y2)=0\frac{dy}{dx}x^2(1-x^2)+(3yx^3-xy+y^2)=0

dydxx2(1x2)+y(3x3x)=y2\frac{dy}{dx}x^2(1-x^2)+y(3x^3-x)=-y^2

Divide by x2(1x2)x^2(1-x^2)

dydx+y(3x3xx2(1x2=y2x2(1x4\frac{dy}{dx}+\frac{y(3x^3-x}{x^2(1-x^2}=\frac{-y^2}{x^2(1-x^4}

Divide by -y2

dydx+(13x2)(xx3)y=1x2x4-\frac{dy}{dx}+\frac{(1-3x^2)}{(x-x^3)y}=\frac{1}{x^2-x^4}

Let v=1y\frac 1y so that dvdx=dydxy2\frac{dv}{dx}=\frac{-dy}{dxy^2}

Substitute in the equation;

dvdx+(13x2)vxx3\frac{dv}{dx}+\frac{(1-3x^2)v}{x-x^3} =1x2x4\frac{1}{x^2-x^4}

Find the integrating factor;

I.F=e13x2xx3=eln(x3x)=x3xe^{\int{\frac{1-3x^2}{x-x^3}}}=e^{ln(x^3-x)}=x^3-x

Multiply all through with the integrating factor;

Substitute 3x2-1=d(x3x)dx\frac{d(x^3-x)}{dx}

(x3x)dvdx+d(x3x)vdx=x3xx2x4(x^3-x)\frac{dv}{dx}+\frac{d(x^3-x)v}{dx}=\frac{x^3-x}{x^2-x^4}

Apply reverse product rule:f(dg)dx+g(df)dx=d(fg)dx\frac{f(dg)}{dx}+\frac{g(df)}{dx}=\frac{d(fg)}{dx}

We have;

d(x3x)vdx=x3xx2x4\frac{d(x^3-x)v}{dx}=\frac{x^3-x}{x^2-x^4}

Integrate both sides with respect to x;

(x3x)v=ln(x)+cx^3-x)v=-ln(x)+c

v=ln(x)+Cx3xv=\frac{-ln(x)+C}{x^3-x}

But v=1yv=\frac1y

1y=ln(x)+Cxx3\frac1y=\frac{ln(x)+C}{x-x^3}

Simplify;

y=xx3ln(x)+C\frac{x-x^3}{ln(x)+C}

2.

Solution;

By distribution,the equation may be written as;

(2xy+y3)dx+(xy2x2)dy=0(2xy+y^3)dx+(xy^2-x^2)dy=0

Check if the equation is exact,

M=2xy+y3;dMdy=2x+3y22xy+y^3 ;\frac{dM}{dy}=2x+3y^2

N=xy2x2;dNdx=y22xxy^2-x^2 ;\frac{dN}{dx}=y^2-2x

dMdydNdx\frac{dM}{dy}\neq\frac{dN}{dx} ,the equation is not exact.

Mx-Ny=2x2y+y3x-xy3+x2y=3x2y

Take an integrating factor given as;

I.F=1MxNy=13x2y\frac{1}{Mx-Ny}=\frac{1}{3x^2y}

Multiply the given equation with the integrating factor ;

2x+y23x2dx+y2x3xydy=0\frac{2x+y^2}{3x^2}dx+\frac{y^2-x}{3xy}dy=0

The general solution of the problem will be given by;

Mdx+\int{Mdx}+\int(Terms of N which are independent of x)

2x+y23x2dx+13ydy=C\int{\frac{2x+y^2}{3x^2}}dx+\int{\frac{-1}{3y}}dy=C

2ln(x)3y23xln(y)3=C\frac{2ln(x)}{3}-\frac{y^2}{3x}-\frac{ln(y)}{3}=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS