Solution.
1.
y(3x3−x+y)dx+x2(1−x2)dy=0 This is the first order nonlinear ordinary differential equation.
Divide on x2(1−x2)dx.
y′=x2(x2−1)3x3y−xy+y2,y′=x2(x−1)(x+1)y2+(x−1)(x+1)3xy−x(x−1)(x+1)y,
y′−x3−x3x2−1y=x4−x2y2. We have Bernuli's equation for n=2.
Divide by y2.
y2y′−(x3−x)y3x2−1=x4−x21. Replacement u=y1, then u′=−y2y′,y′=−u′y2.
−x3−xu(3x2−1)−u′=x4−x21,
u′+((x−1)(x+1)3x−x(x−1)(x+1)1)u=−x4−x21 This is the first order linear equation.
Let be P(x)=(x−1)(x+1)3x−x(x−1)(x+1)1.
∫P(x)dx=∫(x−1)(x+1)3x−x(x−1)(x+1)1dx=ln(x3−x)+C,
where C is some constant.
Solve
u′+P(x)u=0,
udu=−P(x)dx,
∫udu=−∫P(x)dx,
lnu=ln(x3−x)+C,
u=x3−xC. The solution of u′+((x−1)(x+1)3x−x(x−1)(x+1)1)u=−x4−x21 find by the method of variation constant in the form u=x3−xC(x).
C(x)=∫(−x4−x2x3−x)dx=−lnx+C. Thus u=x3−x−lnx+C.
From here y=lnx+Cx−x3.
Answer. y=lnx+Cx−x3.
2.
x(y2−x)dy=y(y2+2x)dx=0. This is the first order nonlinear ordinary differential equation.
Replacement y=z, then dy=2zdz. We will have
(2cz−2zx3)dz=(−z23−2xz)dx. Replacement u=xz, then
x=ux,dz=udx+xdu.
We will have
(2u−2u1x3/2(udx+xdu)=(−u3/2−2u)x3/2dx,
(2ux5/2−2ux5/2)du=(−23u3/2x3/2−23uu3/2)dx. Divide by x5/2 and −23u3/2x3/2−23uu3/2.
We will have
(3u(u+1)1−3(u+1)1)du=xdx. ∫(3u(u+1)1−3(u+1)1)du=∫xdx.
3lnu−32ln(u+1)=lnx+C,
where C is some constant.
From here
(u+1)2u=Cx3.
Thus
(z+x)2z=Cx2. So we have answer
y2=Cx2(y2+x)2. Answer. y2=Cx2(y2+x)2.
Comments