Question #218276

Find the general solution and the second solution of,

x2y"-3xy'+4y=0,given y1(x)=x2



1
Expert's answer
2021-07-28T16:16:42-0400

The general solution of the differential equation will be in the form:


y=y1(x)+y2(x)y=y_1(x)+y_2(x)

Since the solutions are linearly independent, we assume


y2(x)=y1(x)v(x)    y2=vx2(1)y_2(x) = y_1(x)v(x) \implies y_2=vx^2\qquad \cdots (1)

Hence,


y2(x)=2vx+vx2(2)y2(x)=2v+4xv+x2v(3)y_2'(x) = 2vx +v'x^2 \qquad\cdots (2)\\ y_2''(x) = 2v+4xv'+x^2v'' \quad \cdots (3)

Substitute (2) and (3) in (1):


x2(2v+4xv+x2v)3x(2vx+vx2)+4vx2=0x^2(2v+4xv'+x^2v'')-3x(2vx+v'x^2)+4vx^2=0


Simplifying the above:


2vx2+4x3v+x4v6vx23vx3+4vx2=0x4v+x3v=02vx^2+4x^3v'+x^4v''-6vx^2-3v'x^3+4vx^2=0\\ x^4v''+x^3v'=0\\

Thus:


xv+v=0(4)xv''+v'=0 \qquad \cdots (4)

Let:


w=v(5)w=v(6)w=v' \qquad\cdots (5)\\ w'=v'' \qquad\cdots (6)

Put (5) and (6) in (4)


xw+w=0xw=www=1xxw'+w=0\\ xw'=-w\\ -\frac{w'}{w}=\frac{1}{x}

Integrate both sides


wwdw=1xdxlnw=lnxlnw1=lnxw1=x    w=1x\int-\frac{w'}{w}dw=\int \frac{1}{x}dx\\ -\ln w =\ln x\\ \ln w^{-1} = \ln x\\ w^{-1} = x \implies w=\frac{1}{x}

Recall:


v(x)=w    v=wdx=1xdx=lnxv'(x)=w \implies v=\int w dx = \int \frac{1}{x}dx = \ln x

Hence


v=lnx(7)v= \ln x \qquad \cdots (7)

Put (7) in (1), we get:


y2=x2lnxy_2 = x^2 \ln x

Which is the second solution.


The general solution is therefore:


y=C1x2+C2x2lnxy=C_1x^2+C_2x^2 \ln x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS