The general solution of the differential equation will be in the form:
y=y1(x)+y2(x) Since the solutions are linearly independent, we assume
y2(x)=y1(x)v(x)⟹y2=vx2⋯(1) Hence,
y2′(x)=2vx+v′x2⋯(2)y2′′(x)=2v+4xv′+x2v′′⋯(3) Substitute (2) and (3) in (1):
x2(2v+4xv′+x2v′′)−3x(2vx+v′x2)+4vx2=0
Simplifying the above:
2vx2+4x3v′+x4v′′−6vx2−3v′x3+4vx2=0x4v′′+x3v′=0 Thus:
xv′′+v′=0⋯(4) Let:
w=v′⋯(5)w′=v′′⋯(6) Put (5) and (6) in (4)
xw′+w=0xw′=−w−ww′=x1 Integrate both sides
∫−ww′dw=∫x1dx−lnw=lnxlnw−1=lnxw−1=x⟹w=x1 Recall:
v′(x)=w⟹v=∫wdx=∫x1dx=lnx Hence
v=lnx⋯(7) Put (7) in (1), we get:
y2=x2lnx Which is the second solution.
The general solution is therefore:
y=C1x2+C2x2lnx
Comments