Question #218257
Find the general integrals of the PDE

(Y+1)p+(x+1)q=z
1
Expert's answer
2021-07-20T12:37:17-0400

dxy+1=dyx+1=dzz\frac{dx}{y+1}=\frac{dy}{x+1}=\frac{dz}{z}


(x+1)dx=(y+1)dy\int (x+1)dx=\int (y+1)dy


x2/2+x=y2/2+y+c1x^2/2+x=y^2/2+y+c_1


dxdyyx=dzz\frac{dx-dy}{y-x}=\frac{dz}{z}


ln(xy)=ln(c2z)-ln(x-y)=ln(c_2z)


c2=1z(xy)c_2=\frac{1}{z(x-y)}


F(x2/2+xy2/2y,1z(xy))=0F(x^2/2+x-y^2/2-y,\frac{1}{z(x-y)})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS