F(p)=0∫∞f(t)e−ptdt=0∫∞sinat⋅e−ptdt=∣∣u=sinatdu=acosatdtdv=e−ptdtv=−p1e−pt∣∣=x→∞lim(−p1sinat⋅e−pt∣∣0x+pa0∫xcosate−ptdt)=∣∣u=cosatdu=−asinatdtdv=e−ptdtv=−p1e−pt∣∣=x→∞lim(−p1sinat⋅e−pt∣∣0x+pa(−p1cosat⋅e−pt∣0x−pa0∫xsinat⋅e−ptdt))=x→∞lim(−p1sinat⋅e−pt∣∣0x−p2acosat⋅e−pt∣0x−p2a20∫xsinat⋅e−ptdt)=0+0−0+p2acos0⋅e0−p2a2x→∞lim0∫xsinat⋅e−ptdt=p2a−p2a2x→∞lim0∫xsinat⋅e−ptdt
Then
F(p)=p2a−p2a2F(p)⇒F(p)(1+p2a2)=p2a⇒F(p)⋅p2p2+a2=p2a⇒F(p)=p2+a2a
Answer: F(p)=p2+a2a
Comments
Leave a comment