Answer to Question #208299 in Differential Equations for Abuabu

Question #208299

Find the laplace transform of sinat where a is a constant


1
Expert's answer
2021-07-16T11:31:44-0400

F(p)=0f(t)eptdt=0sinateptdt=u=sinatdv=eptdtdu=acosatdtv=1pept=limx(1psinatept0x+ap0xcosateptdt)=u=cosatdv=eptdtdu=asinatdtv=1pept=limx(1psinatept0x+ap(1pcosatept0xap0xsinateptdt))=limx(1psinatept0xap2cosatept0xa2p20xsinateptdt)=0+00+ap2cos0e0a2p2limx0xsinateptdt=ap2a2p2limx0xsinateptdtF(p) = \int\limits_0^\infty {f(t){e^{ - pt}}} dt = \int\limits_0^\infty {\sin at \cdot {e^{ - pt}}} dt = \left| {\begin{matrix} {u = \sin at}&{dv = {e^{ - pt}}dt}\\ {du = a\cos atdt}&{v = - \frac{1}{p}{e^{ - pt}}} \end{matrix}} \right| = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{1}{p}\sin at \cdot {e^{ - pt}}} \right|_0^x + \frac{a}{p}\int\limits_0^x {\cos at{e^{ - pt}}} dt} \right) = \left| {\begin{matrix} {u = \cos at}&{dv = {e^{ - pt}}dt}\\ {du = - a\sin atdt}&{v = - \frac{1}{p}{e^{ - pt}}} \end{matrix}} \right| = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{1}{p}\sin at \cdot {e^{ - pt}}} \right|_0^x + \frac{a}{p}\left( { - \frac{1}{p}\cos at \cdot \left. {{e^{ - pt}}} \right|_0^x - \frac{a}{p}\int\limits_0^x {\sin at \cdot {e^{ - pt}}} dt} \right)} \right) = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{1}{p}\sin at \cdot {e^{ - pt}}} \right|_0^x - \frac{a}{{{p^2}}}\cos at \cdot \left. {{e^{ - pt}}} \right|_0^x - \frac{{{a^2}}}{{{p^2}}}\int\limits_0^x {\sin at \cdot {e^{ - pt}}} dt} \right) = 0 + 0 - 0 + \frac{a}{{{p^2}}}\cos 0 \cdot {e^0} - \frac{{{a^2}}}{{{p^2}}}\mathop {\lim }\limits_{x \to \infty } \int\limits_0^x {\sin at \cdot {e^{ - pt}}} dt = \frac{a}{{{p^2}}} - \frac{{{a^2}}}{{{p^2}}}\mathop {\lim }\limits_{x \to \infty } \int\limits_0^x {\sin at \cdot {e^{ - pt}}} dt

Then

F(p)=ap2a2p2F(p)F(p)(1+a2p2)=ap2F(p)p2+a2p2=ap2F(p)=ap2+a2F(p) = \frac{a}{{{p^2}}} - \frac{{{a^2}}}{{{p^2}}}F(p) \Rightarrow F(p)\left( {1 + \frac{{{a^2}}}{{{p^2}}}} \right) = \frac{a}{{{p^2}}} \Rightarrow F(p) \cdot \frac{{{p^2} + {a^2}}}{{{p^2}}} = \frac{a}{{{p^2}}} \Rightarrow F(p) = \frac{a}{{{p^2} + {a^2}}}

Answer: F(p)=ap2+a2F(p) = \frac{a}{{{p^2} + {a^2}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment