Question #207958

 1) (y - xz)p + (yz - x)q = (x + y)(x - y)


1
Expert's answer
2021-06-28T18:04:11-0400

Given equation is (yxz)p+(yzx)q=(x+y)(xy)(y - xz)p + (yz - x)q = (x + y)(x - y)


Comparing with the standard equation, Pp+Qq=RPp+Qq=R


dxP=dyQ=dzR\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}


Equation will be,

dxyxz=dyyzx=dz(x+y)(xy)=xdx+ydy+zdz0=ydx+xdyy2x2\frac{dx}{y-xz}=\frac{dy}{yz-x}=\frac{dz}{(x+y)(x-y)} = \frac{xdx+ydy+zdz}{0} = \frac{ydx+xdy}{y^2-x^2}


dxyxz=dyyzx=dzx2y2=xdx+ydy+zdz0=ydx+xdyy2x2\frac{dx}{y-xz}=\frac{dy}{yz-x}=\frac{dz}{x^2-y^2} = \frac{xdx+ydy+zdz}{0} = \frac{ydx+xdy}{y^2-x^2}


xdx+ydy+zdz=0{xdx+ydy+zdz} = {0}

solving it,

x2+y2+z2=c1x^2+y^2+z^2=c_1 (1)


Equation (1) is the solution of the given differential equation


Taking (iii) and last part,

dzx2y2=ydx+xdyy2x2\frac{dz}{x^2-y^2} = \frac{ydx+xdy}{y^2-x^2}


dz=ydxxdydz = -ydx-xdy


Integrating both sides,

z=xy+c2z = -xy + c_2  (2)


z+xy=c2z +xy = c_2


Equations (1) and (2) are solutions to the equation.


The general solution of the differential equation will be

ϕ(x2+y2+z2,z+xy)=0.\phi(x^2+y^2+z^2,z+xy)=0.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS