xdx2d2y−(2x−1)dxdy+(x−1)y=0dx2d2y−(2−x1)dxdy+(1−x1)y=0Here,p=−2+x1,q=1−x1Then,1+p+q=0⟹y1=exis a solution of given differential equation. Now, puty=vy1=vex, and corresponding y′andy′′ values in the given differential equation, we getdx2d2v+1xdxdv=0Putu=dxdv. Therefore, the above differential equation isdxdu+xu=0 Using method of separation of variables,udu=−xdxlogu=−logx+logc1u=xc1dxdv=xc1v=c1logx+c2ye−x=c1logx+c2y(x)=ex(c1logx+c2)This is the required solution.
Comments