Solve in series 2x(1-x)d^2y/dx^2+(1-x)dy/dx+3y=0
Solution
Let
"y(x)=\\sum_{n=0}^{\\infty}{a_nx^n}"
"\\frac{dy}{dx}=\\sum_{n=1}^{\\infty}{na_nx^{n-1}}=\\sum_{n=0}^{\\infty}{(n+1)a_{n+1}x^n}"
"\\frac{d^2y}{dx^2}=\\sum_{n=0}^{\\infty}{n(n+1)a_{n+1}x^{n-1}}=\\sum_{n=0}^{\\infty}{(n+1)(n+2)a_{n+2}x^n}"
"(1-x)\\frac{dy}{dx}=a_1+\\sum_{n=1}^{\\infty}[(n+1)a_{n+1}-na_n]x^n"
"2x(1-x)\\frac{d^2y}{dx^2}=4a_2x+2\\sum_{n=0}^{\\infty}{[(n+1)na_{n+1}-(n-1)na_n]x^n}"
Substitution into equation:
"4a_2x+2\\sum_{n=2}^{\\infty}{\\left[n\\left(n+1\\right)a_{n+1}-\\left(n-1\\right)na_n\\right]x^n}+a_1+\\left[2a_2-a_1\\right]x+\\sum_{n=2}^{\\infty}{\\left[\\left(n+1\\right)a_{n+1}-na_n\\right]x^n}+3a_0+3a_1x+3\\sum_{n=2}^{\\infty}{a_nx^n}=0"
Coefficient near xn are equal to zero.
x0 : 3a0+a1=0 => a1=-3a0
x1 :4a2+2a2-a1+3a1=0 => 6a2+2a1=0 => a2=-a1/3= a0
xn (n>1):2n(n+1)an+1-2(n-1)nan+(n+1)an+1-nan+3an=0 => (2n+1)(n+1)an+1 +(3+n-2n2)an=0 =>
an+1 =(2n2-n-3)an/[(2n+1)(n+1)]=(2n-3)an/(2n+1)
a3 =a2/5= a0/5, a4 =3a3/7= 3a0/(5*7), a5 =5a4/9=5*3a0/(5*7*9), a6 =7a5/11=7*5*3a0/(5*7*9*11), …,
an+1 =3a0/[(2n+1)(2n-1)]
General formula for an: an =3a0/[(2n-1)(2n-3)], n>0
Therefore solution is
"y(x)=3a_0\\sum_{n=0}^{\\infty}\\frac{x^n}{(2n-1)(2n-3)}"
Comments
Leave a comment