Solution
Let
y(x)=∑n=0∞anxn
dxdy=∑n=1∞nanxn−1=∑n=0∞(n+1)an+1xn
dx2d2y=∑n=0∞n(n+1)an+1xn−1=∑n=0∞(n+1)(n+2)an+2xn
(1−x)dxdy=a1+∑n=1∞[(n+1)an+1−nan]xn
2x(1−x)dx2d2y=4a2x+2∑n=0∞[(n+1)nan+1−(n−1)nan]xn
Substitution into equation:
4a2x+2∑n=2∞[n(n+1)an+1−(n−1)nan]xn+a1+[2a2−a1]x+∑n=2∞[(n+1)an+1−nan]xn+3a0+3a1x+3∑n=2∞anxn=0
Coefficient near xn are equal to zero.
x0 : 3a0+a1=0 => a1=-3a0
x1 :4a2+2a2-a1+3a1=0 => 6a2+2a1=0 => a2=-a1/3= a0
xn (n>1):2n(n+1)an+1-2(n-1)nan+(n+1)an+1-nan+3an=0 => (2n+1)(n+1)an+1 +(3+n-2n2)an=0 =>
an+1 =(2n2-n-3)an/[(2n+1)(n+1)]=(2n-3)an/(2n+1)
a3 =a2/5= a0/5, a4 =3a3/7= 3a0/(5*7), a5 =5a4/9=5*3a0/(5*7*9), a6 =7a5/11=7*5*3a0/(5*7*9*11), …,
an+1 =3a0/[(2n+1)(2n-1)]
General formula for an: an =3a0/[(2n-1)(2n-3)], n>0
Therefore solution is
y(x)=3a0∑n=0∞(2n−1)(2n−3)xn
Comments