Question #207782

how to solve y'''+2y''+y'=10


1
Expert's answer
2021-06-17T14:49:07-0400

Solution.

y"'+2y''+y'=10

λ3+2λ2+λ=0\lambda^3+2\lambda^2+\lambda=0

λ(λ2+2λ+1)=0\lambda(\lambda^2+2\lambda+1)=0

λ1=0,λ2=1,λ3=1.\lambda_1=0,\lambda_2=-1,\lambda_3=-1.

From here solution of homogeneous equation y+2y+y=0y'''+2y''+y'=0 is

y=C1+C2et+C3tet,y=C_1+C_2e^{-t}+C_3te^{-t},

where C1,C2,C3C_1,C_2,C_3 are some constants.

Find particular solution of equation y+2y+y=10y'''+2y''+y'=10 in the form y=At+B.y=At+B.

Then

y=A,y=y=0.y'=A, y''=y'''=0.

From here A=10,B=0.A=10,B=0.

We will have solution

y=C1+C2et+C3tet+10t.y=C_1+C_2e^{-t}+C_3te^{-t}+10t.

Answer. y=C1+C2et+C3tet+10t.y=C_1+C_2e^{-t}+C_3te^{-t}+10t.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS