Question #207676
solve the intergrating factt ;tdt+xdx=a2(tdx-xdx)/t^2+x^2
1
Expert's answer
2021-06-17T12:45:06-0400

Solve the integrating factor:

tdt+xdx=a2(tdxxdt)t2+x2tdt+xdx=\frac{a^2(tdx-xdt)}{t^2+x^2}

Solution:

(xa2tt2+x2)dx+(t+a2xt2+x2)dt=0(x-\frac{a^2t}{t^2+x^2})dx+(t+\frac{a^2x}{t^2+x^2})dt=0

Pdx+Qdt=0Pdx+Qdt=0

where P=(xa2tt2+x2)P=(x-\frac{a^2t}{t^2+x^2}) and Q=(t+a2xt2+x2)Q=(t+\frac{a^2x}{t^2+x^2}) .

Let's find Pt\frac{\partial P}{\partial t} and Qx\frac{\partial Q}{\partial x}:

Pt=a2x2+t22t2(t2+x2)2=a2t2x2(t2+x2)2\frac{\partial P}{\partial t}=-a^2\cdot\frac{x^2+t^2-2t^2}{(t^2+x^2)^2}=a^2\cdot\frac{t^2-x^2}{(t^2+x^2)^2};

Qx=a2t2+x22x2(t2+x2)2=a2t2x2(t2+x2)2\frac{\partial Q}{\partial x}=a^2\cdot\frac{t^2+x^2-2x^2}{(t^2+x^2)^2}=a^2\cdot\frac{t^2-x^2}{(t^2+x^2)^2} .

Since Pt=Qx\frac{\partial P}{\partial t}=\frac{\partial Q}{\partial x} than we can conclude that it is a total differential equation.

Its solution can be find as:

U(x,t)=x0xP(τ,t0)dτ+t0tQ(x,τ)dτU(x,t)=\int_{x_0}^x P(\tau,t_0)d\tau+\int_{t_0}^t Q(x,\tau)d\tau

where x0x_0 and t0t_0 are any values that can be freely chosen. Let's choose x0=1x_0=1, t0=0t_0=0 .

U(x,t)=1x(τa2002+τ2)dτ+0t(τ+a2xτ2+x2)dτ=U(x,t)=\int_{1}^x (\tau-\frac{a^2\cdot0}{0^2+\tau^2})d\tau+\int_{0}^t (\tau+\frac{a^2x}{\tau^2+x^2})d\tau=

1xτdτ+0t(τ+a2xτ2+x2)dτ=\int_{1}^x \tau d\tau+\int_{0}^t (\tau+\frac{a^2x}{\tau^2+x^2})d\tau= x2212+t22+a2arctantx\frac{x^2}{2}-\frac12+\frac{t^2}{2}+a^2\arctan{\frac {t}{x}} .

So the general integral of the equation has the form:

x22+t22+a2arctantx=const\frac{x^2}{2}+\frac{t^2}{2}+a^2\arctan{\frac {t}{x}}=const .

Answer:

This equation is a total differential equation therefore, its solution can be found without an integrating factor or any constant value can be used as integrating factor in this case.

Solution: x22+t22+a2arctantx=const\frac{x^2}{2}+\frac{t^2}{2}+a^2\arctan{\frac {t}{x}}=const .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS