y′′+y=sinx Write the related homogeneous or complementary equation:
y′′+y=0
The general solution of a nonhomogeneous equation is the sum of the general solution yh(x) of the related homogeneous equation and a particular solution yp(x) of the nonhomogeneous equation:
y(x)=yh(x)+yp(x) Consider a homogeneous equation
y′′+y=0 Write the characteristic (auxiliary) equation:
r1=i,r2=−i The general solution of the homogeneous equation is
yh(x)=C1sinx+C2cosx
Let
yp=x(Asinx+Bcosx) Then
yp′=Asinx+Bcosx+x(Acosx−Bsinx)
yp′′=Acosx−Bsinx+Acosx−Bsinx
+x(−Asinx−Bcosx)
Substitute
Acosx−Bsinx+Acosx−Bsinx
+x(−Asinx−Bcosx)+x(Asinx+Bcosx)
=sinx
2Acosx−2Bsinx=sinx
A=0,B=−21
The general solution of a second order homogeneous differential equation be
y(x)=C1sinx+C2cosx−21xcosx
Comments
Leave a comment