Answer to Question #207804 in Differential Equations for abigail

Question #207804

y''+y=senx


1
Expert's answer
2021-06-17T14:51:41-0400
y+y=sinxy''+y=\sin x

Write the related homogeneous or complementary equation:


y+y=0y''+y=0


The general solution of a nonhomogeneous equation is the sum of the general solution yh(x)y_h(x) of the related homogeneous equation and a particular solution yp(x)y_p(x) of the nonhomogeneous equation:


y(x)=yh(x)+yp(x)y(x)=y_h(x)+y_p(x)

Consider a homogeneous equation 


y+y=0y''+y=0

Write the characteristic (auxiliary) equation:

r1=i,r2=ir_1=i, r_2=-i

The general solution of the homogeneous equation is


yh(x)=C1sinx+C2cosxy_h(x)=C_1\sin x+C_2\cos x



Let

yp=x(Asinx+Bcosx)y_p=x(A\sin x+B\cos x)

Then


yp=Asinx+Bcosx+x(AcosxBsinx)y_p'=A\sin x+B\cos x+x(A\cos x-B\sin x)

yp=AcosxBsinx+AcosxBsinxy_p''=A\cos x-B\sin x+A\cos x-B\sin x

+x(AsinxBcosx)+x(-A\sin x-B\cos x)

Substitute


AcosxBsinx+AcosxBsinxA\cos x-B\sin x+A\cos x-B\sin x

+x(AsinxBcosx)+x(Asinx+Bcosx)+x(-A\sin x-B\cos x)+x(A\sin x+B\cos x)

=sinx=\sin x


2Acosx2Bsinx=sinx2A\cos x-2B\sin x=\sin x

A=0,B=12A=0, B=-\dfrac{1}{2}



The general solution of a second order homogeneous differential equation be


y(x)=C1sinx+C2cosx12xcosxy(x)=C_1\sin x+C_2\cos x-\dfrac{1}{2}x\cos x




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment