Answer to Question #207419 in Differential Equations for Tushar

Question #207419

y = 2px + py^2


1
Expert's answer
2021-06-21T11:19:07-0400

given Differential equation: y = 2px + py2

where p = dydx\frac{dy}{dx}

by putting this we get, y = 2dydx\frac{dy}{dx}x + dydx\frac{dy}{dx}y2

    \implies y = dydx\frac{dy}{dx}(2x+y2)


    \implies dxdy\frac{dx}{dy} y = (2x+y2)


dividing by y both sides, we get


    \implies dxdy\frac{dx}{dy} = 2xy\frac{2x}{y} + y


    \implies dxdy\frac{dx}{dy} - 2xy\frac{2x}{y} = y


now it is a linear differential equation,


integrating factor (I.F) = e2ydye^{\int \frac{-2}{y} dy} = e21ydye^{-2\int \frac{1}{y} dy} = e2ln(y)e^{-2ln(y)} = eln(1y2)e^{ln(\frac{1}{y^2})} = 1y2\frac{1}{y^2}


therefore, the solution of given differential equation is

    \implies x\cdot 1y2\frac{1}{y^2} = 1y2ydy\int \frac{1}{y^2} \cdot y \cdot dy + C where C is any constant


    \implies xy2\frac{x}{y^2} = 1ydy\int \frac{1}{y} \cdot dy + C


    \implies xy2\frac{x}{y^2} = ln(y)ln(y) + C


    \implies x = y2ln(y) + Cy2







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment