First, we construct a general solution to the homogeneous equation:
x 2 y ′ ′ − 4 x y ′ + 6 y = 0 {x^2}y'' - 4xy' + 6y = 0 x 2 y ′′ − 4 x y ′ + 6 y = 0
Let's make the substitution:
x = e t , y ′ = e − t d y d t , y ′ ′ = e − 2 t ( d 2 y d t 2 − d y d t ) . {x = {e^t},\;\;y' = {e^{ - t}}\frac{{dy}}{{dt}},}\;\;
{y'' = {e^{ - 2t}}\left( {\frac{{{d^2}y}}{{d{t^2}}} - \frac{{dy}}{{dt}}} \right).} x = e t , y ′ = e − t d t d y , y ′′ = e − 2 t ( d t 2 d 2 y − d t d y ) .
As a result, the homogeneous equation will take the form:
e 2 t e − 2 t ( d 2 y d t 2 − d y d t ) − 4 e t e − t d y d t + 6 y = 0 , ⇒ d 2 y d t 2 − 5 d y d t + 6 y = 0 = 0 \cancel{{{e^{2t}}}}\cancel{{{e^{ - 2t}}}}\left( {\frac{{{d^2}y}}{{d{t^2}}} - \frac{{dy}}{{dt}}} \right) - 4\cancel{{{e^t}}}\cancel{{{e^{ - t}}}}\frac{{dy}}{{dt}} + 6y = 0,\;\; \Rightarrow \frac{{{d^2}y}}{{d{t^2}}} - 5\frac{{dy}}{{dt}} + 6y = 0 = 0 e 2 t e − 2 t ( d t 2 d 2 y − d t d y ) − 4 e t e − t d t d y + 6 y = 0 , ⇒ d t 2 d 2 y − 5 d t d y + 6 y = 0 = 0
Let's solve the characteristic equation:
k 2 − 5 k + 6 = 0 ⇒ ( k − 2 ) ( k − 3 ) = 0 ⇒ k 1 = 2 , k 2 = 3 {k^2} - 5k + 6 = 0 \Rightarrow (k - 2)(k - 3) = 0 \Rightarrow {k_1} = 2,\,{k_2} = 3 k 2 − 5 k + 6 = 0 ⇒ ( k − 2 ) ( k − 3 ) = 0 ⇒ k 1 = 2 , k 2 = 3
Then
y 0 ( t ) = C 1 e 2 t + C 2 e 3 t {y_0}(t) = {C_1}{e^{2t}} + {C_2}{e^{3t}} y 0 ( t ) = C 1 e 2 t + C 2 e 3 t
We will seek a particular solution of the inhomogeneous equation d 2 y d t 2 − 5 d y d t + 6 y = 42 e 4 t = 42 e − 4 t \frac{{{d^2}y}}{{d{t^2}}} - 5\frac{{dy}}{{dt}} + 6y = \frac{{42}}{{{e^{4t}}}} = 42{e^{ - 4t}} d t 2 d 2 y − 5 d t d y + 6 y = e 4 t 42 = 42 e − 4 t in the form
Y = A e − 4 t ⇒ Y ′ = − 4 A e − 4 t ⇒ Y ′ ′ = 16 A e − 4 t Y = A{e^{ - 4t}} \Rightarrow Y' = - 4A{e^{ - 4t}} \Rightarrow Y'' = 16A{e^{ - 4t}} Y = A e − 4 t ⇒ Y ′ = − 4 A e − 4 t ⇒ Y ′′ = 16 A e − 4 t
Then
42 A e − 4 t = 42 e − 4 t ⇒ A = 1 ⇒ Y = e − 4 t 42A{e^{ - 4t}} = 42{e^{ - 4t}} \Rightarrow A = 1 \Rightarrow Y = {e^{ - 4t}} 42 A e − 4 t = 42 e − 4 t ⇒ A = 1 ⇒ Y = e − 4 t
So,
y ( t ) = y 0 ( t ) + Y = C 1 e 2 t + C 2 e 3 t + e − 4 t ⇒ y ( x ) = C 1 x 2 + C 2 x 3 + x − 4 y(t) = {y_0}(t) + Y = {C_1}{e^{2t}} + {C_2}{e^{3t}} + {e^{ - 4t}} \Rightarrow y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}} y ( t ) = y 0 ( t ) + Y = C 1 e 2 t + C 2 e 3 t + e − 4 t ⇒ y ( x ) = C 1 x 2 + C 2 x 3 + x − 4
Answer: y ( x ) = C 1 x 2 + C 2 x 3 + x − 4 y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}} y ( x ) = C 1 x 2 + C 2 x 3 + x − 4
Comments