First, we construct a general solution to the homogeneous equation:
x2y′′−4xy′+6y=0
Let's make the substitution:
x=et,y′=e−tdtdy,y′′=e−2t(dt2d2y−dtdy).
As a result, the homogeneous equation will take the form:
e2te−2t(dt2d2y−dtdy)−4ete−tdtdy+6y=0,⇒dt2d2y−5dtdy+6y=0=0
Let's solve the characteristic equation:
k2−5k+6=0⇒(k−2)(k−3)=0⇒k1=2,k2=3
Then
y0(t)=C1e2t+C2e3t
We will seek a particular solution of the inhomogeneous equation dt2d2y−5dtdy+6y=e4t42=42e−4t in the form
Y=Ae−4t⇒Y′=−4Ae−4t⇒Y′′=16Ae−4t
Then
42Ae−4t=42e−4t⇒A=1⇒Y=e−4t
So,
y(t)=y0(t)+Y=C1e2t+C2e3t+e−4t⇒y(x)=C1x2+C2x3+x−4
Answer: y(x)=C1x2+C2x3+x−4
Comments