Answer to Question #206788 in Differential Equations for Leela krishna

Question #206788

X²(d²y/dx²)-4x(dy/dx)+6y=42/x⁴


1
Expert's answer
2021-06-15T08:44:05-0400

First, we construct a general solution to the homogeneous equation:

"{x^2}y'' - 4xy' + 6y = 0"

Let's make the substitution:

"{x = {e^t},\\;\\;y' = {e^{ - t}}\\frac{{dy}}{{dt}},}\\;\\;\n{y'' = {e^{ - 2t}}\\left( {\\frac{{{d^2}y}}{{d{t^2}}} - \\frac{{dy}}{{dt}}} \\right).}"

As a result, the homogeneous equation will take the form:

"\\cancel{{{e^{2t}}}}\\cancel{{{e^{ - 2t}}}}\\left( {\\frac{{{d^2}y}}{{d{t^2}}} - \\frac{{dy}}{{dt}}} \\right) - 4\\cancel{{{e^t}}}\\cancel{{{e^{ - t}}}}\\frac{{dy}}{{dt}} + 6y = 0,\\;\\; \\Rightarrow \\frac{{{d^2}y}}{{d{t^2}}} - 5\\frac{{dy}}{{dt}} + 6y = 0 = 0"

Let's solve the characteristic equation:

"{k^2} - 5k + 6 = 0 \\Rightarrow (k - 2)(k - 3) = 0 \\Rightarrow {k_1} = 2,\\,{k_2} = 3"

Then

"{y_0}(t) = {C_1}{e^{2t}} + {C_2}{e^{3t}}"

We will seek a particular solution of the inhomogeneous equation "\\frac{{{d^2}y}}{{d{t^2}}} - 5\\frac{{dy}}{{dt}} + 6y = \\frac{{42}}{{{e^{4t}}}} = 42{e^{ - 4t}}" in the form

"Y = A{e^{ - 4t}} \\Rightarrow Y' = - 4A{e^{ - 4t}} \\Rightarrow Y'' = 16A{e^{ - 4t}}"

Then

"42A{e^{ - 4t}} = 42{e^{ - 4t}} \\Rightarrow A = 1 \\Rightarrow Y = {e^{ - 4t}}"

So,

"y(t) = {y_0}(t) + Y = {C_1}{e^{2t}} + {C_2}{e^{3t}} + {e^{ - 4t}} \\Rightarrow y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}}"

Answer: "y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS