Question #206788

X²(d²y/dx²)-4x(dy/dx)+6y=42/x⁴


1
Expert's answer
2021-06-15T08:44:05-0400

First, we construct a general solution to the homogeneous equation:

x2y4xy+6y=0{x^2}y'' - 4xy' + 6y = 0

Let's make the substitution:

x=et,    y=etdydt,    y=e2t(d2ydt2dydt).{x = {e^t},\;\;y' = {e^{ - t}}\frac{{dy}}{{dt}},}\;\; {y'' = {e^{ - 2t}}\left( {\frac{{{d^2}y}}{{d{t^2}}} - \frac{{dy}}{{dt}}} \right).}

As a result, the homogeneous equation will take the form:

e2te2t(d2ydt2dydt)4etetdydt+6y=0,    d2ydt25dydt+6y=0=0\cancel{{{e^{2t}}}}\cancel{{{e^{ - 2t}}}}\left( {\frac{{{d^2}y}}{{d{t^2}}} - \frac{{dy}}{{dt}}} \right) - 4\cancel{{{e^t}}}\cancel{{{e^{ - t}}}}\frac{{dy}}{{dt}} + 6y = 0,\;\; \Rightarrow \frac{{{d^2}y}}{{d{t^2}}} - 5\frac{{dy}}{{dt}} + 6y = 0 = 0

Let's solve the characteristic equation:

k25k+6=0(k2)(k3)=0k1=2,k2=3{k^2} - 5k + 6 = 0 \Rightarrow (k - 2)(k - 3) = 0 \Rightarrow {k_1} = 2,\,{k_2} = 3

Then

y0(t)=C1e2t+C2e3t{y_0}(t) = {C_1}{e^{2t}} + {C_2}{e^{3t}}

We will seek a particular solution of the inhomogeneous equation d2ydt25dydt+6y=42e4t=42e4t\frac{{{d^2}y}}{{d{t^2}}} - 5\frac{{dy}}{{dt}} + 6y = \frac{{42}}{{{e^{4t}}}} = 42{e^{ - 4t}} in the form

Y=Ae4tY=4Ae4tY=16Ae4tY = A{e^{ - 4t}} \Rightarrow Y' = - 4A{e^{ - 4t}} \Rightarrow Y'' = 16A{e^{ - 4t}}

Then

42Ae4t=42e4tA=1Y=e4t42A{e^{ - 4t}} = 42{e^{ - 4t}} \Rightarrow A = 1 \Rightarrow Y = {e^{ - 4t}}

So,

y(t)=y0(t)+Y=C1e2t+C2e3t+e4ty(x)=C1x2+C2x3+x4y(t) = {y_0}(t) + Y = {C_1}{e^{2t}} + {C_2}{e^{3t}} + {e^{ - 4t}} \Rightarrow y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}}

Answer: y(x)=C1x2+C2x3+x4y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS