X²(d²y/dx²)-4x(dy/dx)+6y=42/x⁴
First, we construct a general solution to the homogeneous equation:
"{x^2}y'' - 4xy' + 6y = 0"
Let's make the substitution:
"{x = {e^t},\\;\\;y' = {e^{ - t}}\\frac{{dy}}{{dt}},}\\;\\;\n{y'' = {e^{ - 2t}}\\left( {\\frac{{{d^2}y}}{{d{t^2}}} - \\frac{{dy}}{{dt}}} \\right).}"
As a result, the homogeneous equation will take the form:
"\\cancel{{{e^{2t}}}}\\cancel{{{e^{ - 2t}}}}\\left( {\\frac{{{d^2}y}}{{d{t^2}}} - \\frac{{dy}}{{dt}}} \\right) - 4\\cancel{{{e^t}}}\\cancel{{{e^{ - t}}}}\\frac{{dy}}{{dt}} + 6y = 0,\\;\\; \\Rightarrow \\frac{{{d^2}y}}{{d{t^2}}} - 5\\frac{{dy}}{{dt}} + 6y = 0 = 0"
Let's solve the characteristic equation:
"{k^2} - 5k + 6 = 0 \\Rightarrow (k - 2)(k - 3) = 0 \\Rightarrow {k_1} = 2,\\,{k_2} = 3"
Then
"{y_0}(t) = {C_1}{e^{2t}} + {C_2}{e^{3t}}"
We will seek a particular solution of the inhomogeneous equation "\\frac{{{d^2}y}}{{d{t^2}}} - 5\\frac{{dy}}{{dt}} + 6y = \\frac{{42}}{{{e^{4t}}}} = 42{e^{ - 4t}}" in the form
"Y = A{e^{ - 4t}} \\Rightarrow Y' = - 4A{e^{ - 4t}} \\Rightarrow Y'' = 16A{e^{ - 4t}}"
Then
"42A{e^{ - 4t}} = 42{e^{ - 4t}} \\Rightarrow A = 1 \\Rightarrow Y = {e^{ - 4t}}"
So,
"y(t) = {y_0}(t) + Y = {C_1}{e^{2t}} + {C_2}{e^{3t}} + {e^{ - 4t}} \\Rightarrow y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}}"
Answer: "y(x) = {C_1}{x^2} + {C_2}{x^3} + {x^{ - 4}}"
Comments
Leave a comment