Question #206799

Reduce the second order linear differential equation d²y/dt²-7dy/dt+10y=0 to linear system of first order differential equation and hence solve the system of ODE's


1
Expert's answer
2021-06-15T18:26:08-0400
d2ydt27dydt+10y=0\dfrac{d^2y}{dt^2}-7\dfrac{dy}{dt}+10y=0




y7y+10y=0y''-7y'+10y=0

Let u=y,v=y(t).u=y, v=y'(t).

Then u=y=v,v=y=10y+7y=10u+7vu'=y'=v, v'=y''=-10y+7y'=-10u+7v



u=0u+1vu'=0u+1vv=10u+7vv'=-10u+7v


[uv]=[01107][uv]\begin{bmatrix} u' \\ v' \end{bmatrix}= \begin{bmatrix} 0 & 1 \\ -10 & 7 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}

x=[uv],A=[01107],x=[uv]\vec {x'}=\begin{bmatrix} u' \\ v' \end{bmatrix}, A=\begin{bmatrix} 0 & 1 \\ -10 & 7 \end{bmatrix}, \vec x=\begin{bmatrix} u \\ v \end{bmatrix}

The linear system of first order differential equation 

x=Ax\vec {x'}= A\vec x

Find the eigenvalues and eigen vectors of A=[01107]A=\begin{bmatrix} 0 & 1 \\ -10 & 7 \end{bmatrix}



det(AλI)=A=0λ1107λ\det (A-\lambda I)=A=\begin{vmatrix} 0-\lambda & 1 \\ -10 & 7-\lambda \end{vmatrix}

=λ(7λ)+10=λ27λ+10=-\lambda(7-\lambda)+10=\lambda^2-7\lambda+10

det(AλI)=0=>λ27λ+10=0\det (A-\lambda I)=0=>\lambda^2-7\lambda+10=0

λ1=5,λ2=2\lambda_1=5, \lambda_2=2

These are the eigenvalues.

λ=5\lambda=5


[0λ1107λ]=[51102]\begin{bmatrix} 0-\lambda & 1 \\ -10 & 7-\lambda \end{bmatrix}=\begin{bmatrix} -5 & 1 \\ -10 & 2 \end{bmatrix}

R2=R22R1R_2=R_2-2R_1


[5100]\begin{bmatrix} -5 & 1 \\ 0 & 0 \end{bmatrix}

R1=R1/5R_1=-R_1/5


[11/500]\begin{bmatrix} 1 & -1/5 \\ 0 & 0 \end{bmatrix}

If we take q2=1,q_2=1, then q1=1/5.q_1=1/5.


q=[1/51]\vec q=\begin{bmatrix} 1/5 \\ 1 \end{bmatrix}

λ=2\lambda=2

[0λ1107λ]=[21105]\begin{bmatrix} 0-\lambda & 1 \\ -10 & 7-\lambda \end{bmatrix}=\begin{bmatrix} -2 & 1 \\ -10 & 5 \end{bmatrix}

R2=R25R1R_2=R_2-5R_1

[2100]\begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix}

R1=R1/2R_1=-R_1/2

[11/200]\begin{bmatrix} 1 & -1/2 \\ 0 & 0 \end{bmatrix}

If we take s2=1,s_2=1, then s1=1/2.s_1=1/2.

s=[1/21]\vec s=\begin{bmatrix} 1/2 \\ 1 \end{bmatrix}


General solution is


[uv]=C1e5t[15]+C2e2t[12]\begin{bmatrix} u \\ v \end{bmatrix}=C_1e^{5t}\begin{bmatrix} 1 \\ 5 \end{bmatrix}+C_2e^{2t}\begin{bmatrix} 1 \\ 2 \end{bmatrix}


y=C1e5t+C2e2ty=C_1e^{5t}+C_2e^{2t}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS