Answer to Question #206799 in Differential Equations for Leela krishna

Question #206799

Reduce the second order linear differential equation d²y/dt²-7dy/dt+10y=0 to linear system of first order differential equation and hence solve the system of ODE's


1
Expert's answer
2021-06-15T18:26:08-0400
"\\dfrac{d^2y}{dt^2}-7\\dfrac{dy}{dt}+10y=0"




"y''-7y'+10y=0"

Let "u=y, v=y'(t)."

Then "u'=y'=v, v'=y''=-10y+7y'=-10u+7v"



"u'=0u+1v""v'=-10u+7v"


"\\begin{bmatrix}\n u' \\\\\n v'\n\\end{bmatrix}=\n\\begin{bmatrix}\n 0 & 1 \\\\\n -10 & 7\n\\end{bmatrix}\n\\begin{bmatrix}\n u \\\\\n v\n\\end{bmatrix}"

"\\vec {x'}=\\begin{bmatrix}\n u' \\\\\n v'\n\\end{bmatrix}, A=\\begin{bmatrix}\n 0 & 1 \\\\\n -10 & 7\n\\end{bmatrix}, \\vec x=\\begin{bmatrix}\n u \\\\\n v\n\\end{bmatrix}"

The linear system of first order differential equation 

"\\vec {x'}= A\\vec x"

Find the eigenvalues and eigen vectors of "A=\\begin{bmatrix}\n 0 & 1 \\\\\n -10 & 7\n\\end{bmatrix}"



"\\det (A-\\lambda I)=A=\\begin{vmatrix}\n 0-\\lambda & 1 \\\\\n -10 & 7-\\lambda\n\\end{vmatrix}"

"=-\\lambda(7-\\lambda)+10=\\lambda^2-7\\lambda+10"

"\\det (A-\\lambda I)=0=>\\lambda^2-7\\lambda+10=0"

"\\lambda_1=5, \\lambda_2=2"

These are the eigenvalues.

"\\lambda=5"


"\\begin{bmatrix}\n 0-\\lambda & 1 \\\\\n -10 & 7-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n -5 & 1 \\\\\n -10 & 2\n\\end{bmatrix}"

"R_2=R_2-2R_1"


"\\begin{bmatrix}\n -5 & 1 \\\\\n 0 & 0\n\\end{bmatrix}"

"R_1=-R_1\/5"


"\\begin{bmatrix}\n 1 & -1\/5 \\\\\n 0 & 0\n\\end{bmatrix}"

If we take "q_2=1," then "q_1=1\/5."


"\\vec q=\\begin{bmatrix}\n 1\/5 \\\\\n 1\n\\end{bmatrix}"

"\\lambda=2"

"\\begin{bmatrix}\n 0-\\lambda & 1 \\\\\n -10 & 7-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n -2 & 1 \\\\\n -10 & 5\n\\end{bmatrix}"

"R_2=R_2-5R_1"

"\\begin{bmatrix}\n -2 & 1 \\\\\n 0 & 0\n\\end{bmatrix}"

"R_1=-R_1\/2"

"\\begin{bmatrix}\n 1 & -1\/2 \\\\\n 0 & 0\n\\end{bmatrix}"

If we take "s_2=1," then "s_1=1\/2."

"\\vec s=\\begin{bmatrix}\n 1\/2 \\\\\n 1\n\\end{bmatrix}"


General solution is


"\\begin{bmatrix}\n u \\\\\n v\n\\end{bmatrix}=C_1e^{5t}\\begin{bmatrix}\n 1 \\\\\n 5\n\\end{bmatrix}+C_2e^{2t}\\begin{bmatrix}\n 1 \\\\\n 2\n\\end{bmatrix}"


"y=C_1e^{5t}+C_2e^{2t}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS