Reduce the second order linear differential equation d²y/dt²-7dy/dt+10y=0 to linear system of first order differential equation and hence solve the system of ODE's
Let "u=y, v=y'(t)."
Then "u'=y'=v, v'=y''=-10y+7y'=-10u+7v"
"\\vec {x'}=\\begin{bmatrix}\n u' \\\\\n v'\n\\end{bmatrix}, A=\\begin{bmatrix}\n 0 & 1 \\\\\n -10 & 7\n\\end{bmatrix}, \\vec x=\\begin{bmatrix}\n u \\\\\n v\n\\end{bmatrix}"
The linear system of first order differential equation
"\\vec {x'}= A\\vec x"Find the eigenvalues and eigen vectors of "A=\\begin{bmatrix}\n 0 & 1 \\\\\n -10 & 7\n\\end{bmatrix}"
"=-\\lambda(7-\\lambda)+10=\\lambda^2-7\\lambda+10"
"\\det (A-\\lambda I)=0=>\\lambda^2-7\\lambda+10=0"
"\\lambda_1=5, \\lambda_2=2"
These are the eigenvalues.
"\\lambda=5"
"R_2=R_2-2R_1"
"R_1=-R_1\/5"
If we take "q_2=1," then "q_1=1\/5."
"\\lambda=2"
"\\begin{bmatrix}\n 0-\\lambda & 1 \\\\\n -10 & 7-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n -2 & 1 \\\\\n -10 & 5\n\\end{bmatrix}""R_2=R_2-5R_1"
"\\begin{bmatrix}\n -2 & 1 \\\\\n 0 & 0\n\\end{bmatrix}""R_1=-R_1\/2"
"\\begin{bmatrix}\n 1 & -1\/2 \\\\\n 0 & 0\n\\end{bmatrix}"If we take "s_2=1," then "s_1=1\/2."
"\\vec s=\\begin{bmatrix}\n 1\/2 \\\\\n 1\n\\end{bmatrix}"General solution is
Comments
Leave a comment