d 2 y d t 2 − 7 d y d t + 10 y = 0 \dfrac{d^2y}{dt^2}-7\dfrac{dy}{dt}+10y=0 d t 2 d 2 y − 7 d t d y + 10 y = 0
y ′ ′ − 7 y ′ + 10 y = 0 y''-7y'+10y=0 y ′′ − 7 y ′ + 10 y = 0
Let u = y , v = y ′ ( t ) . u=y, v=y'(t). u = y , v = y ′ ( t ) .
Then u ′ = y ′ = v , v ′ = y ′ ′ = − 10 y + 7 y ′ = − 10 u + 7 v u'=y'=v, v'=y''=-10y+7y'=-10u+7v u ′ = y ′ = v , v ′ = y ′′ = − 10 y + 7 y ′ = − 10 u + 7 v
u ′ = 0 u + 1 v u'=0u+1v u ′ = 0 u + 1 v v ′ = − 10 u + 7 v v'=-10u+7v v ′ = − 10 u + 7 v
[ u ′ v ′ ] = [ 0 1 − 10 7 ] [ u v ] \begin{bmatrix}
u' \\
v'
\end{bmatrix}=
\begin{bmatrix}
0 & 1 \\
-10 & 7
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix} [ u ′ v ′ ] = [ 0 − 10 1 7 ] [ u v ]
x ′ ⃗ = [ u ′ v ′ ] , A = [ 0 1 − 10 7 ] , x ⃗ = [ u v ] \vec {x'}=\begin{bmatrix}
u' \\
v'
\end{bmatrix}, A=\begin{bmatrix}
0 & 1 \\
-10 & 7
\end{bmatrix}, \vec x=\begin{bmatrix}
u \\
v
\end{bmatrix} x ′ = [ u ′ v ′ ] , A = [ 0 − 10 1 7 ] , x = [ u v ]
The linear system of first order differential equation
x ′ ⃗ = A x ⃗ \vec {x'}= A\vec x x ′ = A x Find the eigenvalues and eigen vectors of A = [ 0 1 − 10 7 ] A=\begin{bmatrix}
0 & 1 \\
-10 & 7
\end{bmatrix} A = [ 0 − 10 1 7 ]
det ( A − λ I ) = A = ∣ 0 − λ 1 − 10 7 − λ ∣ \det (A-\lambda I)=A=\begin{vmatrix}
0-\lambda & 1 \\
-10 & 7-\lambda
\end{vmatrix} det ( A − λ I ) = A = ∣ ∣ 0 − λ − 10 1 7 − λ ∣ ∣
= − λ ( 7 − λ ) + 10 = λ 2 − 7 λ + 10 =-\lambda(7-\lambda)+10=\lambda^2-7\lambda+10 = − λ ( 7 − λ ) + 10 = λ 2 − 7 λ + 10
det ( A − λ I ) = 0 = > λ 2 − 7 λ + 10 = 0 \det (A-\lambda I)=0=>\lambda^2-7\lambda+10=0 det ( A − λ I ) = 0 => λ 2 − 7 λ + 10 = 0 λ 1 = 5 , λ 2 = 2 \lambda_1=5, \lambda_2=2 λ 1 = 5 , λ 2 = 2
These are the eigenvalues.
λ = 5 \lambda=5 λ = 5
[ 0 − λ 1 − 10 7 − λ ] = [ − 5 1 − 10 2 ] \begin{bmatrix}
0-\lambda & 1 \\
-10 & 7-\lambda
\end{bmatrix}=\begin{bmatrix}
-5 & 1 \\
-10 & 2
\end{bmatrix} [ 0 − λ − 10 1 7 − λ ] = [ − 5 − 10 1 2 ] R 2 = R 2 − 2 R 1 R_2=R_2-2R_1 R 2 = R 2 − 2 R 1
[ − 5 1 0 0 ] \begin{bmatrix}
-5 & 1 \\
0 & 0
\end{bmatrix} [ − 5 0 1 0 ] R 1 = − R 1 / 5 R_1=-R_1/5 R 1 = − R 1 /5
[ 1 − 1 / 5 0 0 ] \begin{bmatrix}
1 & -1/5 \\
0 & 0
\end{bmatrix} [ 1 0 − 1/5 0 ] If we take q 2 = 1 , q_2=1, q 2 = 1 , then q 1 = 1 / 5. q_1=1/5. q 1 = 1/5.
q ⃗ = [ 1 / 5 1 ] \vec q=\begin{bmatrix}
1/5 \\
1
\end{bmatrix} q = [ 1/5 1 ]
λ = 2 \lambda=2 λ = 2
[ 0 − λ 1 − 10 7 − λ ] = [ − 2 1 − 10 5 ] \begin{bmatrix}
0-\lambda & 1 \\
-10 & 7-\lambda
\end{bmatrix}=\begin{bmatrix}
-2 & 1 \\
-10 & 5
\end{bmatrix} [ 0 − λ − 10 1 7 − λ ] = [ − 2 − 10 1 5 ] R 2 = R 2 − 5 R 1 R_2=R_2-5R_1 R 2 = R 2 − 5 R 1
[ − 2 1 0 0 ] \begin{bmatrix}
-2 & 1 \\
0 & 0
\end{bmatrix} [ − 2 0 1 0 ] R 1 = − R 1 / 2 R_1=-R_1/2 R 1 = − R 1 /2
[ 1 − 1 / 2 0 0 ] \begin{bmatrix}
1 & -1/2 \\
0 & 0
\end{bmatrix} [ 1 0 − 1/2 0 ] If we take s 2 = 1 , s_2=1, s 2 = 1 , then s 1 = 1 / 2. s_1=1/2. s 1 = 1/2.
s ⃗ = [ 1 / 2 1 ] \vec s=\begin{bmatrix}
1/2 \\
1
\end{bmatrix} s = [ 1/2 1 ]
General solution is
[ u v ] = C 1 e 5 t [ 1 5 ] + C 2 e 2 t [ 1 2 ] \begin{bmatrix}
u \\
v
\end{bmatrix}=C_1e^{5t}\begin{bmatrix}
1 \\
5
\end{bmatrix}+C_2e^{2t}\begin{bmatrix}
1 \\
2
\end{bmatrix} [ u v ] = C 1 e 5 t [ 1 5 ] + C 2 e 2 t [ 1 2 ]
y = C 1 e 5 t + C 2 e 2 t y=C_1e^{5t}+C_2e^{2t} y = C 1 e 5 t + C 2 e 2 t
Comments