Solution.
y"-4y'+13y=sin2t
λ2−4λ+13=0
D=16−4•13=16−52=−36
λ=24±6i=2±3i
From here solution of homogeneous equation y′′−4y′+13=0 is
y=C1e2tsin3t+C2e2tcos3t,
where C1,C2 are some constants.
Find particular solution of equation y′′−4y′+13=sin2t in the form y=Asin2t+Bcos2t.
Then
y′=2Acos2t−2Bsin2t, and
y′′=−4Asin2t−4Bcos2t.
(−4A+8B+13A)sin2t+(−4B−8A+13B)cos2t=sin2t Therefore, A=1459,B=1458.
So, we have solution
y=C1e2tsin3t+C2e2tcos3t+1459sin2t+1458cos2t.
Answer. y=C1e2tsin3t+C2e2tcos3t+1459sin2t+1458cos2t.
Comments
Thank you. This was really helpful
Leave a comment