Answer to Question #206918 in Differential Equations for Nshalati

Question #206918

y"-4y'+13y=sin2t


1
Expert's answer
2021-06-15T09:22:52-0400

Solution.

y"-4y'+13y=sin2t

λ24λ+13=0\lambda^2-4\lambda+13=0

D=16413=1652=36D=16-4•13=16-52=-36

λ=4±6i2=2±3i\lambda=\frac{4\pm 6i}{2}=2\pm 3i

From here solution of homogeneous equation y4y+13=0y''-4y'+13=0 is

y=C1e2tsin3t+C2e2tcos3t,y=C_1e^{2t}\sin{3t}+C_2e^{2t}\cos{3t},

where C1,C2C_1,C_2 are some constants.

Find particular solution of equation y4y+13=sin2ty''-4y'+13=\sin{2t} in the form y=Asin2t+Bcos2t.y=A\sin{2t}+B\cos{2t}.

Then

y=2Acos2t2Bsin2t,y'=2A\cos{2t}-2B\sin{2t}, and

y=4Asin2t4Bcos2t.y''=-4A\sin{2t}-4B\cos{2t}.


(4A+8B+13A)sin2t+(4B8A+13B)cos2t=sin2t(-4A+8B+13A)\sin{2t}+(-4B-8A+13B)\cos{2t}=\newline\sin{2t}

Therefore, A=9145,B=8145.A=\frac{9}{145},B=\frac{8}{145}.

So, we have solution

y=C1e2tsin3t+C2e2tcos3t+9145sin2t+8145cos2t.y=C_1e^{2t}\sin{3t}+C_2e^{2t}\cos{3t}+\frac{9}{145}\sin{2t}+\frac{8}{145}\cos{2t}.

Answer. y=C1e2tsin3t+C2e2tcos3t+9145sin2t+8145cos2t.y=C_1e^{2t}\sin{3t}+C_2e^{2t}\cos{3t}+\frac{9}{145}\sin{2t}+\frac{8}{145}\cos{2t}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Nshalati
22.06.21, 22:28

Thank you. This was really helpful

Leave a comment