Answer to Question #200436 in Differential Equations for Ayush

Question #200436

Using the method of undetermined coefficients, find the general solution of the DE yiv -2ym+2yn=3e-x+2e-x+e-xsin x.


1
Expert's answer
2022-02-08T07:31:44-0500

y(iv)2y+2y=3ex+2ex+exsinx=5ex+exsinxy^{(iv)} -2y'''+2y''=3e^{-x}+2e^{-x}+e^{-x}sin x=5e^{-x}+e^{-x}sin x


characteristic equation:

k42k3+2k2=0k^4-2k^3+2k^2=0

k2(k22k+2)=0k^2(k^2-2k+2)=0

k1,2=0k_{1,2}=0

k3,4=2±482=1±ik_{3,4}=\frac{2\pm \sqrt{4-8}}{2}=1\pm i


yc=c1+c2x+ex(c3cosx+c4sinx)y_c=c_1+c_2x+e^x(c_3cosx+c_4sinx)


yp1=Aexy_{p1}=Ae^{-x}

Aex+2Aex+2Aex=5exAe^{-x}+2Ae^{-x}+2Ae^{-x}=5e^{-x}

A=1A=1

yp1=exy_{p1}=e^{-x}


yp2=ex(Acosx+Bsinx)y_{p2}=e^{-x}(Acosx+Bsinx)

yp2=ex(Acosx+Bsinx)+ex(Asinx+Bcosx)=y'_{p2}=-e^{-x}(Acosx+Bsinx)+e^{-x}(-Asinx+Bcosx)=

=ex((BA)cosx(A+B)sinx)=e^{-x}((B-A)cosx-(A+B)sinx)

yp2=ex((BA)cosx(A+B)sinx)+ex((AB)sinx(A+B)cosx)=y''_{p2}=-e^{-x}((B-A)cosx-(A+B)sinx)+e^{-x}((A-B)sinx-(A+B)cosx)=

=ex(2Bcosx+2Asinx)=e^{-x}(-2Bcosx+2Asinx)

yp2=2ex(AsinxBcosx)+2ex(Acosx+Bsinx)=y'''_{p2}=-2e^{-x}(Asinx-Bcosx)+2e^{-x}(Acosx+Bsinx)=

=2ex((A+B)cosx+(BA)sinx)=2e^{-x}((A+B)cosx+(B-A)sinx)

yp2(iv)=2ex((A+B)cosx+(BA)sinx)+y^{(iv)}_{p2}=-2e^{-x}((A+B)cosx+(B-A)sinx)+

+2ex((A+B)sinx+(BA)cosx)=4ex(Acosx+Bsinx)+2e^{-x}(-(A+B)sinx+(B-A)cosx)=-4e^{-x}(Acosx+Bsinx)


4ex(Acosx+Bsinx)4ex((A+B)cosx+(BA)sinx)+-4e^{-x}(Acosx+Bsinx)-4e^{-x}((A+B)cosx+(B-A)sinx)+

+2ex(2Bcosx+2Asinx)=exsinx+2e^{-x}(-2Bcosx+2Asinx)=e^{-x}sin x


4A4(A+B)4B=0    A+B=0-4A-4(A+B)-4B=0\implies A+B=0

4B4(BA)+4A=1    AB=1-4B-4(B-A)+4A=1\implies A-B=1

A=1/2,B=1/2A=1/2,B=-1/2

yp2=ex(cosxsinx)/2y_{p2}=e^{-x}(cosx-sinx)/2


y=yc+yp1+yp2=y=y_c+y_{p1}+y_{p2}=

=c1+c2x+ex(c3cosx+c4sinx)+ex+ex(cosxsinx)/2=c_1+c_2x+e^x(c_3cosx+c_4sinx)+e^{-x}+e^{-x}(cosx-sinx)/2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment