y(iv)−2y′′′+2y′′=3e−x+2e−x+e−xsinx=5e−x+e−xsinx
characteristic equation:
k4−2k3+2k2=0
k2(k2−2k+2)=0
k1,2=0
k3,4=22±4−8=1±i
yc=c1+c2x+ex(c3cosx+c4sinx)
yp1=Ae−x
Ae−x+2Ae−x+2Ae−x=5e−x
A=1
yp1=e−x
yp2=e−x(Acosx+Bsinx)
yp2′=−e−x(Acosx+Bsinx)+e−x(−Asinx+Bcosx)=
=e−x((B−A)cosx−(A+B)sinx)
yp2′′=−e−x((B−A)cosx−(A+B)sinx)+e−x((A−B)sinx−(A+B)cosx)=
=e−x(−2Bcosx+2Asinx)
yp2′′′=−2e−x(Asinx−Bcosx)+2e−x(Acosx+Bsinx)=
=2e−x((A+B)cosx+(B−A)sinx)
yp2(iv)=−2e−x((A+B)cosx+(B−A)sinx)+
+2e−x(−(A+B)sinx+(B−A)cosx)=−4e−x(Acosx+Bsinx)
−4e−x(Acosx+Bsinx)−4e−x((A+B)cosx+(B−A)sinx)+
+2e−x(−2Bcosx+2Asinx)=e−xsinx
−4A−4(A+B)−4B=0⟹A+B=0
−4B−4(B−A)+4A=1⟹A−B=1
A=1/2,B=−1/2
yp2=e−x(cosx−sinx)/2
y=yc+yp1+yp2=
=c1+c2x+ex(c3cosx+c4sinx)+e−x+e−x(cosx−sinx)/2
Comments
Leave a comment