If d2x/dt2 + g(x-a)/b = 0, (a,b,g being positive constants) and x=a' ans dx/dt = 0 when t = 0, show that x = a + (a'-a) cos[(√g)t/b].
given
"\\frac{d^2x}{st^2}+\\frac{g}{b}(x-a)=0; \\space x=a' ,\\frac{dx}{dt}=0 \\space when \\space t=0\n\\\\"
we can write it
"\\frac{d^2x}{dt^2}+\\frac{g}{b}x-\\frac{ag}{b}=0\\space \\\\\n\\frac{d^2x}{dt^2}+\\frac{g}{b}x=\\frac{ag}{b}\\space \\\\" .........[1]
Complementary Function
Auxiliary equation is:
"m^2+\\frac{g}{b}=0\n\\\\m^2=-\\frac{g}{b}\\\\\nm=\\pm\\sqrt{\\frac{g}{b}}"
thus the C.F. solution is
"x = e^{0x}(Acos(\\sqrt{\\frac{g}{b}}t + Bsin(\\sqrt{\\frac{g}{b}}t))\\\\\nx =(Acos(\\sqrt{\\frac{g}{b}}t + Bsin(\\sqrt{\\frac{g}{b}}t))\\\\" ........................[CF]
Particular Solution
"\\frac{d^2x}{dt^2}+\\frac{g}{b}x=f(t)\\space \\\\\nwhere \\space f(t)=\\frac{ag}{b}\\space \\\\"
So, we should probably look for a solution of the form:
x=C........[2]
Where the constant C is to be determined by direct substitution and comparison:
Differentiating [2] wrt x twice we get:
x′ =0
x''=0
Substituting these results into the DE [1] we get:
"(0) + \\frac{gc}{b} = \\frac{ag}{b}\\\\ C=a"
thus the P.I. solution is
x=a ....................................[PI]
General Solution = CF + PI
"x =(Acos(\\sqrt{\\frac{g}{b}}t + Bsin(\\sqrt{\\frac{g}{b}}t))+a\\\\"
Next we apply the initial conditions:
"x=a' ,\\frac{dx}{dt}=0 \\space when \\space t=0"
So that:
a'=A cos(0)+B sin(0)+a
A=a'−a
And differentiating the above result wrt t
"x'(t)=\u2212A\\sqrt{\\frac{g}{b}}sin(\\sqrt{\\frac{g}{b}}t)+B\\sqrt{\\frac{g}{b}}cos(\\sqrt{\\frac{g}{b}}t)"
And again applying the initial conditions:
"0=\u2212A\\sqrt{\\frac{g}{b}}sin0+B\\sqrt{\\frac{g}{b}}cos0\\\\\nB=0"
And so the complete solution is:
"x\n(\nt\n)\n=\n(\na\n'\n\u2212\na\n)\ncos\n(\n\\sqrt{\\frac{g}{b}}\nt\n)\n+\na"
Comments
Leave a comment