given
d 2 x s t 2 + g b ( x − a ) = 0 ; x = a ′ , d x d t = 0 w h e n t = 0 \frac{d^2x}{st^2}+\frac{g}{b}(x-a)=0; \space x=a' ,\frac{dx}{dt}=0 \space when \space t=0
\\ s t 2 d 2 x + b g ( x − a ) = 0 ; x = a ′ , d t d x = 0 w h e n t = 0
we can write it
d 2 x d t 2 + g b x − a g b = 0 d 2 x d t 2 + g b x = a g b \frac{d^2x}{dt^2}+\frac{g}{b}x-\frac{ag}{b}=0\space \\
\frac{d^2x}{dt^2}+\frac{g}{b}x=\frac{ag}{b}\space \\ d t 2 d 2 x + b g x − b a g = 0 d t 2 d 2 x + b g x = b a g .........[1]
Complementary Function
Auxiliary equation is:
m 2 + g b = 0 m 2 = − g b m = ± g b m^2+\frac{g}{b}=0
\\m^2=-\frac{g}{b}\\
m=\pm\sqrt{\frac{g}{b}} m 2 + b g = 0 m 2 = − b g m = ± b g
thus the C.F. solution is
x = e 0 x ( A c o s ( g b t + B s i n ( g b t ) ) x = ( A c o s ( g b t + B s i n ( g b t ) ) x = e^{0x}(Acos(\sqrt{\frac{g}{b}}t + Bsin(\sqrt{\frac{g}{b}}t))\\
x =(Acos(\sqrt{\frac{g}{b}}t + Bsin(\sqrt{\frac{g}{b}}t))\\ x = e 0 x ( A cos ( b g t + B s in ( b g t )) x = ( A cos ( b g t + B s in ( b g t )) ........................[CF]
Particular Solution
d 2 x d t 2 + g b x = f ( t ) w h e r e f ( t ) = a g b \frac{d^2x}{dt^2}+\frac{g}{b}x=f(t)\space \\
where \space f(t)=\frac{ag}{b}\space \\ d t 2 d 2 x + b g x = f ( t ) w h ere f ( t ) = b a g
So, we should probably look for a solution of the form:
x=C........[2]
Where the constant C is to be determined by direct substitution and comparison:
Differentiating [2] wrt x twice we get:
x′ =0
x''=0
Substituting these results into the DE [1] we get:
( 0 ) + g c b = a g b C = a (0) + \frac{gc}{b} = \frac{ag}{b}\\ C=a ( 0 ) + b g c = b a g C = a
thus the P.I. solution is
x=a ....................................[PI]
General Solution = CF + PI
x = ( A c o s ( g b t + B s i n ( g b t ) ) + a x =(Acos(\sqrt{\frac{g}{b}}t + Bsin(\sqrt{\frac{g}{b}}t))+a\\ x = ( A cos ( b g t + B s in ( b g t )) + a
Next we apply the initial conditions:
x = a ′ , d x d t = 0 w h e n t = 0 x=a' ,\frac{dx}{dt}=0 \space when \space t=0 x = a ′ , d t d x = 0 w h e n t = 0
So that:
a'=A cos(0)+B sin(0)+a
A=a'−a
And differentiating the above result wrt t
x ′ ( t ) = − A g b s i n ( g b t ) + B g b c o s ( g b t ) x'(t)=−A\sqrt{\frac{g}{b}}sin(\sqrt{\frac{g}{b}}t)+B\sqrt{\frac{g}{b}}cos(\sqrt{\frac{g}{b}}t) x ′ ( t ) = − A b g s in ( b g t ) + B b g cos ( b g t )
And again applying the initial conditions:
0 = − A g b s i n 0 + B g b c o s 0 B = 0 0=−A\sqrt{\frac{g}{b}}sin0+B\sqrt{\frac{g}{b}}cos0\\
B=0 0 = − A b g s in 0 + B b g cos 0 B = 0
And so the complete solution is:
x ( t ) = ( a ′ − a ) c o s ( g b t ) + a x
(
t
)
=
(
a
'
−
a
)
cos
(
\sqrt{\frac{g}{b}}
t
)
+
a x ( t ) = ( a ′ − a ) cos ( b g t ) + a
Comments