given
st2d2x+bg(x−a)=0; x=a′,dtdx=0 when t=0
we can write it
dt2d2x+bgx−bag=0 dt2d2x+bgx=bag .........[1]
Complementary Function
Auxiliary equation is:
m2+bg=0m2=−bgm=±bg
thus the C.F. solution is
x=e0x(Acos(bgt+Bsin(bgt))x=(Acos(bgt+Bsin(bgt)) ........................[CF]
Particular Solution
dt2d2x+bgx=f(t) where f(t)=bag
So, we should probably look for a solution of the form:
x=C........[2]
Where the constant C is to be determined by direct substitution and comparison:
Differentiating [2] wrt x twice we get:
x′ =0
x''=0
Substituting these results into the DE [1] we get:
(0)+bgc=bagC=a
thus the P.I. solution is
x=a ....................................[PI]
General Solution = CF + PI
x=(Acos(bgt+Bsin(bgt))+a
Next we apply the initial conditions:
x=a′,dtdx=0 when t=0
So that:
a'=A cos(0)+B sin(0)+a
A=a'−a
And differentiating the above result wrt t
x′(t)=−Abgsin(bgt)+Bbgcos(bgt)
And again applying the initial conditions:
0=−Abgsin0+Bbgcos0B=0
And so the complete solution is:
x(t)=(a′−a)cos(bgt)+a
Comments