Answer to Question #200115 in Differential Equations for Raj Kumar

Question #200115

If d2x/dt2 + g(x-a)/b = 0, (a,b,g being positive constants) and x=a' ans dx/dt = 0 when t = 0, show that x = a + (a'-a) cos[(√g)t/b].


1
Expert's answer
2021-06-02T17:19:29-0400

given

"\\frac{d^2x}{st^2}+\\frac{g}{b}(x-a)=0; \\space x=a' ,\\frac{dx}{dt}=0 \\space when \\space t=0\n\\\\"

we can write it

"\\frac{d^2x}{dt^2}+\\frac{g}{b}x-\\frac{ag}{b}=0\\space \\\\\n\\frac{d^2x}{dt^2}+\\frac{g}{b}x=\\frac{ag}{b}\\space \\\\" .........[1]

Complementary Function

 Auxiliary equation is:

"m^2+\\frac{g}{b}=0\n\\\\m^2=-\\frac{g}{b}\\\\\nm=\\pm\\sqrt{\\frac{g}{b}}"

thus the C.F. solution is

"x = e^{0x}(Acos(\\sqrt{\\frac{g}{b}}t + Bsin(\\sqrt{\\frac{g}{b}}t))\\\\\nx =(Acos(\\sqrt{\\frac{g}{b}}t + Bsin(\\sqrt{\\frac{g}{b}}t))\\\\" ........................[CF]

Particular Solution

"\\frac{d^2x}{dt^2}+\\frac{g}{b}x=f(t)\\space \\\\\nwhere \\space f(t)=\\frac{ag}{b}\\space \\\\"

So, we should probably look for a solution of the form:

x=C........[2]

Where the constant C is to be determined by direct substitution and comparison:

Differentiating [2] wrt x twice we get:

x′ =0

x''=0

Substituting these results into the DE [1] we get:

"(0) + \\frac{gc}{b} = \\frac{ag}{b}\\\\ C=a"

thus the P.I. solution is

x=a ....................................[PI]


General Solution = CF + PI

"x =(Acos(\\sqrt{\\frac{g}{b}}t + Bsin(\\sqrt{\\frac{g}{b}}t))+a\\\\"

Next we apply the initial conditions:

"x=a' ,\\frac{dx}{dt}=0 \\space when \\space t=0"

So that:

a'=A cos(0)+B sin(0)+a

A=a'−a

And differentiating the above result wrt t

"x'(t)=\u2212A\\sqrt{\\frac{g}{b}}sin(\\sqrt{\\frac{g}{b}}t)+B\\sqrt{\\frac{g}{b}}cos(\\sqrt{\\frac{g}{b}}t)"

And again applying the initial conditions:

"0=\u2212A\\sqrt{\\frac{g}{b}}sin0+B\\sqrt{\\frac{g}{b}}cos0\\\\\nB=0"

And so the complete solution is:


"x\n(\nt\n)\n=\n(\na\n'\n\u2212\na\n)\ncos\n(\n\\sqrt{\\frac{g}{b}}\nt\n)\n+\na"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS