Question #200115

If d2x/dt2 + g(x-a)/b = 0, (a,b,g being positive constants) and x=a' ans dx/dt = 0 when t = 0, show that x = a + (a'-a) cos[(√g)t/b].


1
Expert's answer
2021-06-02T17:19:29-0400

given

d2xst2+gb(xa)=0; x=a,dxdt=0 when t=0\frac{d^2x}{st^2}+\frac{g}{b}(x-a)=0; \space x=a' ,\frac{dx}{dt}=0 \space when \space t=0 \\

we can write it

d2xdt2+gbxagb=0 d2xdt2+gbx=agb \frac{d^2x}{dt^2}+\frac{g}{b}x-\frac{ag}{b}=0\space \\ \frac{d^2x}{dt^2}+\frac{g}{b}x=\frac{ag}{b}\space \\ .........[1]

Complementary Function

 Auxiliary equation is:

m2+gb=0m2=gbm=±gbm^2+\frac{g}{b}=0 \\m^2=-\frac{g}{b}\\ m=\pm\sqrt{\frac{g}{b}}

thus the C.F. solution is

x=e0x(Acos(gbt+Bsin(gbt))x=(Acos(gbt+Bsin(gbt))x = e^{0x}(Acos(\sqrt{\frac{g}{b}}t + Bsin(\sqrt{\frac{g}{b}}t))\\ x =(Acos(\sqrt{\frac{g}{b}}t + Bsin(\sqrt{\frac{g}{b}}t))\\ ........................[CF]

Particular Solution

d2xdt2+gbx=f(t) where f(t)=agb \frac{d^2x}{dt^2}+\frac{g}{b}x=f(t)\space \\ where \space f(t)=\frac{ag}{b}\space \\

So, we should probably look for a solution of the form:

x=C........[2]

Where the constant C is to be determined by direct substitution and comparison:

Differentiating [2] wrt x twice we get:

x′ =0

x''=0

Substituting these results into the DE [1] we get:

(0)+gcb=agbC=a(0) + \frac{gc}{b} = \frac{ag}{b}\\ C=a

thus the P.I. solution is

x=a ....................................[PI]


General Solution = CF + PI

x=(Acos(gbt+Bsin(gbt))+ax =(Acos(\sqrt{\frac{g}{b}}t + Bsin(\sqrt{\frac{g}{b}}t))+a\\

Next we apply the initial conditions:

x=a,dxdt=0 when t=0x=a' ,\frac{dx}{dt}=0 \space when \space t=0

So that:

a'=A cos(0)+B sin(0)+a

A=a'−a

And differentiating the above result wrt t

x(t)=Agbsin(gbt)+Bgbcos(gbt)x'(t)=−A\sqrt{\frac{g}{b}}sin(\sqrt{\frac{g}{b}}t)+B\sqrt{\frac{g}{b}}cos(\sqrt{\frac{g}{b}}t)

And again applying the initial conditions:

0=Agbsin0+Bgbcos0B=00=−A\sqrt{\frac{g}{b}}sin0+B\sqrt{\frac{g}{b}}cos0\\ B=0

And so the complete solution is:


x(t)=(aa)cos(gbt)+ax ( t ) = ( a ' − a ) cos ( \sqrt{\frac{g}{b}} t ) + a




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS