A solution of Initial Value Problem
(1-t2)(d2y/dt2) + 2t(dy/dt) - 2y = 0, y(0) = 3, y'(0) = -4
is y1=t. Use the method of reduction of order to find a general solution of Initial Value Problem on the interval -1<t<1.
To solve
"(1-t^2)(\\frac{d^2y}{dt^2}) + 2t(\\frac{dy}{dt}) - 2y = 0"such that
"y(0)=3, \\text{ and } y'(0)=-4""\\text{Let } y(t)=t v(t), \\text{which gives }\\frac{d y(t)}{d t}=t \\frac{d v(t)}{d t}+v(t) \\text{and }\\frac{d^{2} y(t)}{d t^{2}}=t \\frac{d^{2} v(t)}{d t^{2}}+2 \\frac{d v(t)}{d t}\\\\\n2 t\\left(t \\frac{d v(t)}{d t}+v(t)\\right)+\\left(-t^{2}+1\\right)\\left(t \\frac{d^{2} v(t)}{d t^{2}}+2 \\frac{d v(t)}{d t}\\right)-2 t v(t)=0\\\\\n\\text{Simplify:}\\\\\n-t \\frac{d^{2} v(t)}{d t^{2}}\\left(t^{2}-1\\right)+2 \\frac{d v(t)}{d t}=0\\\\\n\\text{Let }\\frac{d V(t)}{d t}=u(t), \\text{which gives }\\frac{d^{2} v(t)}{d t^{2}}=\\frac{d u(t)}{d t} :\\\\\n\\text{Solve for }\\frac{d u(t)}{d t}:\\\\\n\\frac{d u(t)}{d t}=\\frac{2 u(t)}{t\\left(t^{2}-1\\right)}\\\\\n\\text{Simplify:}\\\\\n\\frac{d u(t)}{d t}=-\\frac{2 u(t)}{-t^{3}+t}\\\\"
"\\text{Divide both sides by }u(t):\\\\\n\\frac{\\frac{d u(t)}{d t}}{u(t)}=-\\frac{2}{-t^{3}+t}\\\\\n\\text{Integrate both sides with respect to }t :\\\\\n\\int \\frac{\\frac{d u(t)}{d t}}{u(t)} d t=\\int-\\frac{2}{-t^{3}+t} d t\\\\\n\\text{Evaluate the integrals:}\\\\\n\\log (u(t))=-2\\left(\\log (t)-\\frac{1}{2} \\log \\left(-t^{2}+1\\right)\\right)+c_{1}, \\text{where }c_{1} \\text{is an arbitrary constant.}\\\\\n\\text{Solve for }u(t) :\\\\\nu(t)=-\\frac{e^{c_{1}}\\left(t^{2}-1\\right)}{t^{2}}\\\\\n\\text{Simplify the arbitrary constants:}\\\\\nu(t)=\\frac{c_{1}\\left(t^{2}-1\\right)}{t^{2}}\\\\"
"\\text{Substitute back for }\\frac{d v(t)}{d t}=u(t) :\\\\\n\\frac{d v(t)}{d t}=\\frac{c_{1}\\left(t^{2}-1\\right)}{t^{2}}\\\\\n\\text{Integrate both sides with respect to t :}\\\\\nv(t)=\\int \\frac{c_{1}\\left(t^{2}-1\\right)}{t^{2}} d t=c_{1}\\left(\\frac{1}{t}+t\\right)+c_{2}, \\text{ where }c_{2} \\text{ is an arbitrary constant.}\\\\\n\\text{Substitute back for }y(t)=t v(t), \\text{ which gives }v(t)=\\frac{y(t)}{t}:\\frac{y(t)}{t}=c_{1}\\left(\\frac{1}{t}+t\\right)+c_{2}\\\\\n\\text{Solve for }y(t):\\\\\ny(t)=c_{1}+c_{1} t^{2}+c_{2} t\\\\\n\\text{Solve for the unknown constants using the initial conditions:}\\\\\n\\text{Compute }\\frac{d y(t)}{d t}:\\\\\n\\frac{d y(t)}{d t}=\\frac{d}{d t}\\left(c_{1}+c_{1} t^{2}+c_{2} t\\right)\\\\\n=2 c_{1} t+c_{2}\\\\"
"\\text{Substitute }y(0)=3 \\text{ into }y(t)=c_{1}+t^{2} c_{1}+t c_{2}:\\\\\nc_{1}=3\\\\\n\\text{Substitute }y^{\\prime}(0)=-4 \\text{ into }\\frac{d y(t)}{d t}=2 t c_{1}+c_{2} :\\\\\nc_{2}=-4\\\\\n\\text{Solve the system:}\\\\\nc_{1}=3\\\\\nc_{2}=-4\\\\\n\\text{Substitute }c_{1}=3 \\text{ and }c_{2}=-4 \\text{ into }y(t)=c_{1}+t^{2} c_{1}+t c_{2}:\\\\\n\\text{The required solution is:}\\\\\ny(t)=3 t^{2}-4 t+3\\\\"
Comments
Leave a comment