2)solve (2x^2+2xy+2xz^2+1)dx+dy+2zdz=0
"P=2x^\n2\n +2xy+2xz^\n2+1\n ,Q=1,R=2z"
If x is a constant ", dx=0,"
"dy+2zdz=0,"
"\\int dy+\\int 2zdz=C,"
"y+z^2=f(x)."
Differentiate "y+z^2=f(x),"
"dy+2zdz-f'(x)dx=0," "f \n'\n (x)=\u2212(2x^\n2\n +2xy+2xz^2+1)," "f'(x) =-(2x^2+1) - 2x( y+z^2\n )."
Replace "y+z^2=f(x),"
"f'(x) =-(2x^2+1)-2xf(x)",
"f \n'\n (x)+2xf(x)=(\u22122x ^\n2\n \u22121)".
Solve the linear equation "f'(x)+2xf(x)=\u2212(2x^\n2\n +1),"
"e^{\n \u222b2xdx}=e^{\n x^\n2\n},"
"e^{x^2}f(x)=-\\int e^{x^2}(2x^2+1)dx+C="
"-\\int x\\cdot2xe^{x^2}dx-\\int e^{x^2}dx+C="
"-xe^{x^2}+\\int e^{x ^2}dx- \\int e^{x^2} dx+C="
"=\u2212xe ^\n{\n x ^\n2\n }+C,"
"f(x) =-x+Ce^{-x^2\n },"
"y+z^2=-x+Ce^{-x^2},"
"x+y+z^2=Ce ^\n{\n \u2212x ^\n2\n }"
Comments
Leave a comment