Question #200108

2)solve (2x^2+2xy+2xz^2+1)dx+dy+2zdz=0


1
Expert's answer
2021-06-04T03:49:08-0400

P=2x2+2xy+2xz2+1,Q=1,R=2zP=2x^ 2 +2xy+2xz^ 2+1 ,Q=1,R=2z

If x is a constant ,dx=0,, dx=0,

dy+2zdz=0,dy+2zdz=0,

dy+2zdz=C,\int dy+\int 2zdz=C,

y+z2=f(x).y+z^2=f(x).

Differentiate y+z2=f(x),y+z^2=f(x),

dy+2zdzf(x)dx=0,dy+2zdz-f'(x)dx=0, f(x)=(2x2+2xy+2xz2+1),f ' (x)=−(2x^ 2 +2xy+2xz^2+1), f(x)=(2x2+1)2x(y+z2).f'(x) =-(2x^2+1) - 2x( y+z^2 ).

Replace y+z2=f(x),y+z^2=f(x),

f(x)=(2x2+1)2xf(x)f'(x) =-(2x^2+1)-2xf(x),

f(x)+2xf(x)=(2x21)f ' (x)+2xf(x)=(−2x ^ 2 −1).

Solve the linear equation f(x)+2xf(x)=(2x2+1),f'(x)+2xf(x)=−(2x^ 2 +1),

e2xdx=ex2,e^{ ∫2xdx}=e^{ x^ 2 },

ex2f(x)=ex2(2x2+1)dx+C=e^{x^2}f(x)=-\int e^{x^2}(2x^2+1)dx+C=

x2xex2dxex2dx+C=-\int x\cdot2xe^{x^2}dx-\int e^{x^2}dx+C=

xex2+ex2dxex2dx+C=-xe^{x^2}+\int e^{x ^2}dx- \int e^{x^2} dx+C=

=xex2+C,=−xe ^ { x ^ 2 }+C,

f(x)=x+Cex2,f(x) =-x+Ce^{-x^2 },

y+z2=x+Cex2,y+z^2=-x+Ce^{-x^2},

x+y+z2=Cex2x+y+z^2=Ce ^ { −x ^ 2 }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS