P=2x2+2xy+2xz2+1,Q=1,R=2z
If x is a constant ,dx=0,
dy+2zdz=0,
∫dy+∫2zdz=C,
y+z2=f(x).
Differentiate y+z2=f(x),
dy+2zdz−f′(x)dx=0, f′(x)=−(2x2+2xy+2xz2+1), f′(x)=−(2x2+1)−2x(y+z2).
Replace y+z2=f(x),
f′(x)=−(2x2+1)−2xf(x),
f′(x)+2xf(x)=(−2x2−1).
Solve the linear equation f′(x)+2xf(x)=−(2x2+1),
e∫2xdx=ex2,
ex2f(x)=−∫ex2(2x2+1)dx+C=
−∫x⋅2xex2dx−∫ex2dx+C=
−xex2+∫ex2dx−∫ex2dx+C=
=−xex2+C,
f(x)=−x+Ce−x2,
y+z2=−x+Ce−x2,
x+y+z2=Ce−x2
Comments