Question:find the integral surface of the equation(y−z)2xyp+(x2−y2)q+z(x2−y2)=0through the curvex=t2,y=0,z=t3solution:use lagrange′s method(y−z)2xydx=(y−z)(x2−y2)dy=y2−x2dzNow I=II(y−z)2xydx=(y−z)(x2−y2)dy(x2−y2)dx−2xydy=0this is exact equation (since if Mdx+Ndy=0, and ∂y∂M=∂x∂N then it is called exact equation.Now we know thatfor exact equations ,solution is ∫Mdx+∫[N−∂y∂∫Mdx]dy=c1hence3x3−y2x=c1.................................(1)Now II=IIIdy=(z−y)dzdzdy+y=zit is linear diff. eq.//for it′s solution I.F.=e∫Pdz, where p=1 multiple of yI.F.=e∫1dz=ezandsolution asez.y=∫ez.z dzez.y=ez(z−1)+c2..............................(2)now we have 2 equations3x3−y2x=c1.................................(1)ez.y=ez(z−1)+c2..............................(2)given curvex=t2,y=0,z=t3;put this values in equations;3(t2)3−(0)2(t2)=c1c1=3(t2)3................................(4)andez.y=ez(z−1)+c2et3.(0)=et3(t3−1)+c2c2=et3(1−t3)...........................(5)now put value of t3=3c1 in (5)c2=e3c1(1−3c1)now put value of c1 and c2ez.y−ez(z−1)=e3(3x3−y2x)(1−3(3x3−y2x))
Comments
Leave a comment