3) find the integral surface of the equation (y-z){2xyp+(x^2-y^2)q}+z(x^2-y^2)=0 through the curve x=t^2, y=0 , z=t^3
"Question:\\\\ find \\space the\\space integral\\space surface \\space of \\space the\\space equation \\\\(y-z){2xyp+(x^2-y^2)q}+z(x^2-y^2)=0\\\\\n through\\space the\\space curve\\\\ x=t^2, y=0 , z=t^3\\\\\nsolution:\n\\\\\nuse\\space lagrange's \\space method\n\\\\\n\\frac{dx}{(y-z)2xy}=\\frac{dy}{(y-z)(x^2-y^2)}=\\frac{dz}{y^2-x^2}\\\\\nNow \\space I=II\\\\\n\\frac{dx}{(y-z)2xy}=\\frac{dy}{(y-z)(x^2-y^2)}\\\\\n{(x^2-y^2)}{dx}-{2xy}{dy}=0\\\\\nthis \\space is\\space exact\\space equation\\space\\\\\n(since\\space if\\space Mdx+Ndy=0,\\space and\\space \\frac{\u2202M}{\u2202y}=\\frac{\u2202N}{\u2202x}\\space then\\space it \\space is \\space called\\space exact \\space equation.\nNow\\space we \\space know\\space that\\\\\nfor\\space exact \\space equations\\space ,solution \\space is\\space\\\\\n\\int Mdx+\\int [N-\\frac{\u2202\\int Mdx}{\u2202y}] dy=c_1\\\\\nhence\\\\\n\\frac{x^3}{3}-y^2x=c_1.................................(1)\\\\\nNow \\space II=III\\\\\ndy=(z-y)dz\\\\\n\\frac{dy}{dz}+y=z\\\\\nit \\space is \\space linear \\space diff.\\space eq.\/\/\nfor \\space it's \\space solution\\space \\\\\nI.F.=e^{\\int P dz}, \\space where \\space p=1\\space multiple\\space of \\space y\\\\\nI.F.=e^{\\int 1 dz}={e}^{z}\\\\\nand \\\\\nsolution\\space as\\\\\n{e}^{z}.y=\\int {e}^{z}.z \\space dz\n{e}^{z} .y= {e}^{z}(z-1)+c_2..............................(2)\\\\\n\nnow\\space we \\space have\\space 2\\space equations\\\\\n\\frac{x^3}{3}-y^2x=c_1.................................(1)\\\\\n{e}^{z} .y= {e}^{z}(z-1)+c_2..............................(2)\\\\\ngiven \\space curve\nx=t^2, y=0 , z=t^3;\nput \\space this\\space values\\space in\\space equations;\n\\frac{(t^2)^3}{3}-(0)^2(t^2)=c_1\\\\\nc_1=\\frac{(t^2)^3}{3}................................(4)\\\\\nand\\\\\n\n{e}^{z} .y= {e}^{z}(z-1)+c_2\\\\\n{e}^{t^3} .(0)= {e}^{t^3}(t^3-1)+c_2\\\\\nc_2={e}^{t^3}(1-t^3)...........................(5)\\\\\nnow\\space put\\space value\\space of \\space t^3=\\sqrt{3c_1}\\space in\\space (5)\\\\\nc_2={e}^{\\sqrt{3c_1}}(1-\\sqrt{3c_1})\\\\\nnow\\space put\\space value\\space of \\space c_1\\space and\\space c_2\\\\\n{e}^{z} .y- {e}^{z}(z-1)={e}^{\\sqrt{3(\\frac{x^3}{3}-y^2x)}}(1-\\sqrt{3(\\frac{x^3}{3}-y^2x)})\\\\"
Comments
Leave a comment