Answer to Question #200137 in Differential Equations for Anuj

Question #200137
  1. (x2-4xy-2y2)dx + (y2-4xy-2x2)dy=0
  2. (x2-xtan2y+sec2y)dy = (tany-2xy-y)dx
  3. (2xy4ey+2xy3+y)dx + (x2y4ey-x2y2-3x)dy=0
  4. (y/x secy-tany)dx+(secy logx-x)dy=0
  5. y dy/dx +4x/3 -y2/3x =0
1
Expert's answer
2022-01-13T07:54:37-0500

1.

M=x24xy2y2M=x^2-4xy-2y^2

N=y24xy2x2N=y^2-4xy-2x^2

M/y=4x4y=N/x\partial M/\partial y=-4x-4y=\partial N/\partial x

so, equation is exact


Mdx=(x24xy2y2)dx=x3/32x2y2y2x\int Mdx=\int (x^2-4xy-2y^2)dx=x^3/3-2x^2y-2y^2x


Ndy=(y24xy2x2)dx=y3/32x2y2y2x\int Ndy=\int (y^2-4xy-2x^2)dx=y^3/3-2x^2y-2y^2x


omitting -2xy2 - 2x2y which already occur in ∫Mdx:

x3/32x2y2y2x+y3/3=cx^3/3-2x^2y-2y^2x+y^3/3=c


2.

M=tany+2xy+yM= -tany+2xy+y

N=x2xtan2y+sec2yN=x^2-xtan^2y+sec^2y

M/y=2xtan2y=N/x\partial M/\partial y=2x-tan^2y=\partial N/\partial x

so, equation is exact


F=Mdx=(tany+2xy+y)dx=x2y+xyxtany+g(y)F=\int Mdx=\int ( -tany+2xy+y)dx=x^2y+xy-xtany+g(y)


F/y=x2+xxsec2y+g(y)\partial F/\partial y=x^2+x-xsec^2y+g'(y)

x2+xxsec2y+g(y)=N=x2xtan2y+sec2yx^2+x-xsec^2y+g'(y)=N=x^2-xtan^2y+sec^2y

g(y)=sec2yg'(y)=sec^2y

g(y)=sec2ydy=tany+cg(y)=\int sec^2y dy=tany +c

F=x2y+xyxtany+tany+c=0F=x^2y+xy-xtany+tany+c=0


3.

M=2xy4ey+2xy3+yM=2xy^4e^y+2xy^3+y

N=x2y4eyx2y23xN=x^2y^4e^y-x^2y^2-3x

MyNxM=8xy248xy3ey2xy4ey+2xy3+y=4y\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}=\frac{-8xy^2-4-8xy^3e^y}{2xy^4e^y+2xy^3+y}=-\frac{4}{y}


Integrating factor:

e(4/y)dy=1/y4e^{\int(-4/y)dy}=1/y^4


then:

1y4(2xy4ey+2xy3+y)dx+1y4(x2y4eyx2y23x)dy=0\frac{1}{y^4}(2xy^4e^y+2xy^3+y)dx +\frac{1}{y^4} (x^2y^4e^y-x^2y^2-3x)dy=0


M1=2xey+2x/y+1/y3M_1=2xe^y+2x/y+1/y^3

N1=x2eyx2/y23x/y4N_1=x^2e^y-x^2/y^2-3x/y^4


M1dx+\int M_1dx+\intop(terms of N1 free from x)dy=cdy=c


(2xey+2x/y+1/y3)dx=c\int (2xe^y+2x/y+1/y^3)dx=c


x2ey+x2/y+x/y3=cx^2e^y+x^2/y+x/y^3=c


4.

MyNxM=tany\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}=-tany

I.f.:

etanydy=cosye^{\int-tanydy}=cosy


Then:

(y/xsecytany)cosydx+(secylogxx)cosydy=0(y/x secy-tany)cosydx+(secy logx-x)cosydy=0

(y/xsinx)dx(xcosylogx)dy=0(y/x-sinx)dx-(xcosy-logx)dy=0

(y/xsinx)dx=ylogxxsiny\int (y/x-sinx)dx=ylogx-xsiny


Solution:

ylogxxsiny=cylogx-xsiny=c


5.

3yyy24=x\frac{3yy'}{y^2-4}=x


3ydyy24=xdx\int\frac{3ydy}{y^2-4}=\int xdx


3ln(y24)=x2+c13ln(y^2-4)=x^2+c_1

y=cex2/3+4y=\sqrt{ce^{x^2/3}+4}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment