Answer to Question #200137 in Differential Equations for Anuj

Question #200137
  1. (x2-4xy-2y2)dx + (y2-4xy-2x2)dy=0
  2. (x2-xtan2y+sec2y)dy = (tany-2xy-y)dx
  3. (2xy4ey+2xy3+y)dx + (x2y4ey-x2y2-3x)dy=0
  4. (y/x secy-tany)dx+(secy logx-x)dy=0
  5. y dy/dx +4x/3 -y2/3x =0
1
Expert's answer
2022-01-13T07:54:37-0500

1.

"M=x^2-4xy-2y^2"

"N=y^2-4xy-2x^2"

"\\partial M\/\\partial y=-4x-4y=\\partial N\/\\partial x"

so, equation is exact


"\\int Mdx=\\int (x^2-4xy-2y^2)dx=x^3\/3-2x^2y-2y^2x"


"\\int Ndy=\\int (y^2-4xy-2x^2)dx=y^3\/3-2x^2y-2y^2x"


omitting -2xy2 - 2x2y which already occur in ∫Mdx:

"x^3\/3-2x^2y-2y^2x+y^3\/3=c"


2.

"M= -tany+2xy+y"

"N=x^2-xtan^2y+sec^2y"

"\\partial M\/\\partial y=2x-tan^2y=\\partial N\/\\partial x"

so, equation is exact


"F=\\int Mdx=\\int ( -tany+2xy+y)dx=x^2y+xy-xtany+g(y)"


"\\partial F\/\\partial y=x^2+x-xsec^2y+g'(y)"

"x^2+x-xsec^2y+g'(y)=N=x^2-xtan^2y+sec^2y"

"g'(y)=sec^2y"

"g(y)=\\int sec^2y dy=tany +c"

"F=x^2y+xy-xtany+tany+c=0"


3.

"M=2xy^4e^y+2xy^3+y"

"N=x^2y^4e^y-x^2y^2-3x"

"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=\\frac{-8xy^2-4-8xy^3e^y}{2xy^4e^y+2xy^3+y}=-\\frac{4}{y}"


Integrating factor:

"e^{\\int(-4\/y)dy}=1\/y^4"


then:

"\\frac{1}{y^4}(2xy^4e^y+2xy^3+y)dx +\\frac{1}{y^4} (x^2y^4e^y-x^2y^2-3x)dy=0"


"M_1=2xe^y+2x\/y+1\/y^3"

"N_1=x^2e^y-x^2\/y^2-3x\/y^4"


"\\int M_1dx+\\intop"(terms of N1 free from x)"dy=c"


"\\int (2xe^y+2x\/y+1\/y^3)dx=c"


"x^2e^y+x^2\/y+x\/y^3=c"


4.

"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=-tany"

I.f.:

"e^{\\int-tanydy}=cosy"


Then:

"(y\/x secy-tany)cosydx+(secy logx-x)cosydy=0"

"(y\/x-sinx)dx-(xcosy-logx)dy=0"

"\\int (y\/x-sinx)dx=ylogx-xsiny"


Solution:

"ylogx-xsiny=c"


5.

"\\frac{3yy'}{y^2-4}=x"


"\\int\\frac{3ydy}{y^2-4}=\\int xdx"


"3ln(y^2-4)=x^2+c_1"

"y=\\sqrt{ce^{x^2\/3}+4}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS