1.
M=x2−4xy−2y2
N=y2−4xy−2x2
∂M/∂y=−4x−4y=∂N/∂x
so, equation is exact
∫Mdx=∫(x2−4xy−2y2)dx=x3/3−2x2y−2y2x
∫Ndy=∫(y2−4xy−2x2)dx=y3/3−2x2y−2y2x
omitting -2xy2 - 2x2y which already occur in ∫Mdx:
x3/3−2x2y−2y2x+y3/3=c
2.
M=−tany+2xy+y
N=x2−xtan2y+sec2y
∂M/∂y=2x−tan2y=∂N/∂x
so, equation is exact
F=∫Mdx=∫(−tany+2xy+y)dx=x2y+xy−xtany+g(y)
∂F/∂y=x2+x−xsec2y+g′(y)
x2+x−xsec2y+g′(y)=N=x2−xtan2y+sec2y
g′(y)=sec2y
g(y)=∫sec2ydy=tany+c
F=x2y+xy−xtany+tany+c=0
3.
M=2xy4ey+2xy3+y
N=x2y4ey−x2y2−3x
M∂y∂M−∂x∂N=2xy4ey+2xy3+y−8xy2−4−8xy3ey=−y4
Integrating factor:
e∫(−4/y)dy=1/y4
then:
y41(2xy4ey+2xy3+y)dx+y41(x2y4ey−x2y2−3x)dy=0
M1=2xey+2x/y+1/y3
N1=x2ey−x2/y2−3x/y4
∫M1dx+∫(terms of N1 free from x)dy=c
∫(2xey+2x/y+1/y3)dx=c
x2ey+x2/y+x/y3=c
4.
M∂y∂M−∂x∂N=−tany
I.f.:
e∫−tanydy=cosy
Then:
(y/xsecy−tany)cosydx+(secylogx−x)cosydy=0
(y/x−sinx)dx−(xcosy−logx)dy=0
∫(y/x−sinx)dx=ylogx−xsiny
Solution:
ylogx−xsiny=c
5.
y2−43yy′=x
∫y2−43ydy=∫xdx
3ln(y2−4)=x2+c1
y=cex2/3+4
Comments
Leave a comment