1.
"M=x^2-4xy-2y^2"
"N=y^2-4xy-2x^2"
"\\partial M\/\\partial y=-4x-4y=\\partial N\/\\partial x"
so, equation is exact
"\\int Mdx=\\int (x^2-4xy-2y^2)dx=x^3\/3-2x^2y-2y^2x"
"\\int Ndy=\\int (y^2-4xy-2x^2)dx=y^3\/3-2x^2y-2y^2x"
omitting -2xy2 - 2x2y which already occur in ∫Mdx:
"x^3\/3-2x^2y-2y^2x+y^3\/3=c"
2.
"M= -tany+2xy+y"
"N=x^2-xtan^2y+sec^2y"
"\\partial M\/\\partial y=2x-tan^2y=\\partial N\/\\partial x"
so, equation is exact
"F=\\int Mdx=\\int ( -tany+2xy+y)dx=x^2y+xy-xtany+g(y)"
"\\partial F\/\\partial y=x^2+x-xsec^2y+g'(y)"
"x^2+x-xsec^2y+g'(y)=N=x^2-xtan^2y+sec^2y"
"g'(y)=sec^2y"
"g(y)=\\int sec^2y dy=tany +c"
"F=x^2y+xy-xtany+tany+c=0"
3.
"M=2xy^4e^y+2xy^3+y"
"N=x^2y^4e^y-x^2y^2-3x"
"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=\\frac{-8xy^2-4-8xy^3e^y}{2xy^4e^y+2xy^3+y}=-\\frac{4}{y}"
Integrating factor:
"e^{\\int(-4\/y)dy}=1\/y^4"
then:
"\\frac{1}{y^4}(2xy^4e^y+2xy^3+y)dx +\\frac{1}{y^4} (x^2y^4e^y-x^2y^2-3x)dy=0"
"M_1=2xe^y+2x\/y+1\/y^3"
"N_1=x^2e^y-x^2\/y^2-3x\/y^4"
"\\int M_1dx+\\intop"(terms of N1 free from x)"dy=c"
"\\int (2xe^y+2x\/y+1\/y^3)dx=c"
"x^2e^y+x^2\/y+x\/y^3=c"
4.
"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=-tany"
I.f.:
"e^{\\int-tanydy}=cosy"
Then:
"(y\/x secy-tany)cosydx+(secy logx-x)cosydy=0"
"(y\/x-sinx)dx-(xcosy-logx)dy=0"
"\\int (y\/x-sinx)dx=ylogx-xsiny"
Solution:
"ylogx-xsiny=c"
5.
"\\frac{3yy'}{y^2-4}=x"
"\\int\\frac{3ydy}{y^2-4}=\\int xdx"
"3ln(y^2-4)=x^2+c_1"
"y=\\sqrt{ce^{x^2\/3}+4}"
Comments
Leave a comment