Question #175240

Show that the general solution of the differential equation

4z'' - 4z' - 3z = cos2x takes the expression: z = c1e^(3x/2) + c2e^(-x/2) - (19/425)cos2x - (8/425)sin2x


1
Expert's answer
2021-03-26T08:38:16-0400

Solution.

4z4z3z=cos2x.4z''-4z'-3z=\cos{2x}.


This is a linear differential equation of the second-order with constant coefficients. The general solution of this equation is found as the sum of the general solution z~\tilde{z} ​ of the corresponding homogeneous equation and some particular integral solution zz_*​ of the inhomogeneous equation:zy=z~+z.zy=\tilde{z}+z_*.

Сompose and solve the characteristic equation:



4λ24λ3=0,λ1=12,λ2=32.4\lambda^2-4\lambda-3=0, \newline \lambda_1=-\frac{1}{2}, \lambda_2=\frac{3}{2}.

 Therefore, z~=C1eλ1x+C2eλ2x.\tilde{z}=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}. So,


z~=C1e12x+C2e32x.\tilde{z}=C_1e^{-\frac{1}{2}x}+C_2e^{\frac{3}{2}x}.

Since the right-hand side contains a cos2x\cos{2x} , we find a particular integral solution zz_* ​ ​in the form: 


z=Acos2x+Bsin2x.z_*=A\cos{2x}+B\sin{2x}.


Using the method of undetermined coefficients we find that A=19425,B=8425.A=-\frac{19}{425}, B=-\frac{8}{425}.

So, the particular integral solution of equation 4z4z3z=cos2x4z''-4z'-3z=\cos{2x} is


z=19425cos2x8425sin2x.z_*=-\frac{19}{425}\cos{2x}-\frac{8}{425}\sin{2x}.


And the general solution of the same equation is


z=C1e12x+C2e32x19425cos2x8425sin2x.z=C_1e^{-\frac{1}{2}x}+C_2e^{\frac{3}{2}x}-\frac{19}{425}\cos{2x}-\frac{8}{425}\sin{2x}.

Answer. z=C1e12x+C2e32x19425cos2x8425sin2x.z=C_1e^{-\frac{1}{2}x}+C_2e^{\frac{3}{2}x}-\frac{19}{425}\cos{2x}-\frac{8}{425}\sin{2x}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS