dy/dx =x(ex2 +2)/6y2
dydx=x(ex2+2)6y2{dy \over dx} ={x(e^{x^2} +2) \over 6y^2}dxdy=6y2x(ex2+2)
∫6y2dy=∫xex2dx+∫2xdx\int6y^2dy=\int xe^{x^2} dx+ \int 2x dx∫6y2dy=∫xex2dx+∫2xdx
To integrate ∫xex2dx\int xe^{x^2} dx∫xex2dx
Let x2=u,then{x^2} =u, thenx2=u,then
dudx=2x{du \over dx}=2xdxdu=2x
du2=xdx{du \over 2} = xdx2du=xdx
12∫eudu=ex22+c{1 \over 2} \int e^ u du= {e^{x^2} \over 2} +c21∫eudu=2ex2+c
∴∫6y2dy=∫xex2dx+∫2xdx\therefore \int6y^2dy=\int xe^{x^2} dx+ \int 2x dx∴∫6y2dy=∫xex2dx+∫2xdx
2y3=ex22+x2+c2y^3={e^{x^2} \over 2} + x^2+c2y3=2ex2+x2+c
y=y=y= (ex24+x22+c2)13({e^{x^2} \over 4} + {x^2 \over 2} + {c \over 2})^{1 \over 3}(4ex2+2x2+2c)31
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment