dy/dx =x(ex2 +2)/6y2
"{dy \\over dx} ={x(e^{x^2} +2) \\over 6y^2}"
"\\int6y^2dy=\\int xe^{x^2} dx+ \\int 2x dx"
To integrate "\\int xe^{x^2} dx"
Let "{x^2} =u, then"
"{du \\over dx}=2x"
"{du \\over 2} = xdx"
"{1 \\over 2} \\int e^ u du= {e^{x^2} \\over 2} +c"
"\\therefore \\int6y^2dy=\\int xe^{x^2} dx+ \\int 2x dx"
"2y^3={e^{x^2} \\over 2} + x^2+c"
"y=" "({e^{x^2} \\over 4} + {x^2 \\over 2} + {c \\over 2})^{1 \\over 3}"
Comments
Leave a comment