Answer to Question #174809 in Differential Equations for Anoop

Question #174809

solve d2u/dt2 =9d2u/dx2 with 0《x《1

u(0,t)=0 , u(1,t)=0 , d u(x,0)/dt =0


u(x,0) = x 0《x《0.25

0.25 0.25《x《0.75

1-x 0.75《x《1


1
Expert's answer
2021-03-25T07:56:54-0400

The wave equation:

d2udt2=c2d2udx2\frac{d^2u}{dt^2}=c^2\frac{d^2u}{dx^2}

The general solution:

u(x,t)=sin(nπx/l)(Ancos(cnπt/l)+Bnsin(cnπt/l))u(x,t)=\sum sin(n\pi x/l)(A_ncos(cn\pi t/l)+B_nsin(cn\pi t/l))

f(x)=u(x,0)=Ansin(nπx/l)f(x)=u(x,0)=\sum A_nsin(n\pi x/l)

g(x)=ut(x,0)=Bn(cnπ/l)sin(nπx/l)g(x)=u_t(x,0)=\sum B_n(cn\pi/l)sin(n\pi x/l)

An=2l0lf(x)sin(nπx/l)dxA_n=\frac{2}{l}\displaystyle\intop ^l_0 f(x)sin(n\pi x/l)dx

Bn=2cnπ0lg(x)sin(nπx/l)dxB_n=\frac{2}{cn\pi}\displaystyle\intop ^l_0 g(x)sin(n\pi x/l)dx

Then:

Bn=0B_n=0

An=2(00.25xsin(nπx)dx+0.250.250.75sin(nπx)dx+0.751(1x)sin(nπx)dx)A_n=2(\displaystyle\intop ^{0.25}_0 xsin(n\pi x)dx+0.25\displaystyle\intop ^{0.75}_{0.25} sin(n\pi x)dx+\displaystyle\intop ^{1}_{0.75} (1-x)sin(n\pi x)dx)

00.25xsin(nπx)dx=sin(nπx)nπxcos(nπx)n2π200.25=\displaystyle\intop ^{0.25}_0 xsin(n\pi x)dx=\frac{sin(n\pi x)-n\pi xcos(n\pi x)}{n^2\pi^2}|^{0.25}_0=

=sin(nπ/4)0.25nπcos(nπ/4)n2π2=\frac{sin(n\pi /4)-0.25n\pi cos(n\pi /4)}{n^2\pi^2}

0.250.75sin(nπx)dx=cos(nπx)nπ0.250.75=cos(3nπ/4)cos(nπ/4)nπ\displaystyle\intop ^{0.75}_{0.25} sin(n\pi x)dx=-\frac{cos(n\pi x)}{n\pi}|^{0.75}_{0.25}=-\frac{cos(3n\pi/4)-cos(n\pi/4)}{n\pi}

0.751(1x)sin(nπx)dx=(cos(nπx)nπsin(nπx)nπxcos(nπx)n2π2)0.751=\displaystyle\intop ^{1}_{0.75} (1-x)sin(n\pi x)dx=(-\frac{cos(n\pi x)}{n\pi}-\frac{sin(n\pi x)-n\pi xcos(n\pi x)}{n^2\pi^2})|^{1}_{0.75}=

=cos(nπ)cos(3nπ/4)nπnπcos(nπ)sin(3nπ/4)+0.75nπcos(3nπ/4)n2π2=-\frac{cos(n\pi)-cos(3n\pi/4)}{n\pi}-\frac{-n\pi cos(n\pi )-sin(3n\pi /4)+0.75n\pi cos(3n\pi/4)}{n^2\pi^2}


u(x,t)=Ansin(nπx)cos(3nπt)u(x,t)=\sum A_nsin(n\pi x)cos(3n\pi t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment