solve d2u/dt2 =9d2u/dx2 with 0《x《1
u(0,t)=0 , u(1,t)=0 , d u(x,0)/dt =0
u(x,0) = x 0《x《0.25
0.25 0.25《x《0.75
1-x 0.75《x《1
The wave equation:
"\\frac{d^2u}{dt^2}=c^2\\frac{d^2u}{dx^2}"
The general solution:
"u(x,t)=\\sum sin(n\\pi x\/l)(A_ncos(cn\\pi t\/l)+B_nsin(cn\\pi t\/l))"
"f(x)=u(x,0)=\\sum A_nsin(n\\pi x\/l)"
"g(x)=u_t(x,0)=\\sum B_n(cn\\pi\/l)sin(n\\pi x\/l)"
"A_n=\\frac{2}{l}\\displaystyle\\intop ^l_0 f(x)sin(n\\pi x\/l)dx"
"B_n=\\frac{2}{cn\\pi}\\displaystyle\\intop ^l_0 g(x)sin(n\\pi x\/l)dx"
Then:
"B_n=0"
"A_n=2(\\displaystyle\\intop ^{0.25}_0 xsin(n\\pi x)dx+0.25\\displaystyle\\intop ^{0.75}_{0.25} sin(n\\pi x)dx+\\displaystyle\\intop ^{1}_{0.75} (1-x)sin(n\\pi x)dx)"
"\\displaystyle\\intop ^{0.25}_0 xsin(n\\pi x)dx=\\frac{sin(n\\pi x)-n\\pi xcos(n\\pi x)}{n^2\\pi^2}|^{0.25}_0="
"=\\frac{sin(n\\pi \/4)-0.25n\\pi cos(n\\pi \/4)}{n^2\\pi^2}"
"\\displaystyle\\intop ^{0.75}_{0.25} sin(n\\pi x)dx=-\\frac{cos(n\\pi x)}{n\\pi}|^{0.75}_{0.25}=-\\frac{cos(3n\\pi\/4)-cos(n\\pi\/4)}{n\\pi}"
"\\displaystyle\\intop ^{1}_{0.75} (1-x)sin(n\\pi x)dx=(-\\frac{cos(n\\pi x)}{n\\pi}-\\frac{sin(n\\pi x)-n\\pi xcos(n\\pi x)}{n^2\\pi^2})|^{1}_{0.75}="
"=-\\frac{cos(n\\pi)-cos(3n\\pi\/4)}{n\\pi}-\\frac{-n\\pi cos(n\\pi )-sin(3n\\pi \/4)+0.75n\\pi cos(3n\\pi\/4)}{n^2\\pi^2}"
"u(x,t)=\\sum A_nsin(n\\pi x)cos(3n\\pi t)"
Comments
Leave a comment