The wave equation:
dt2d2u=c2dx2d2u
The general solution:
u(x,t)=∑sin(nπx/l)(Ancos(cnπt/l)+Bnsin(cnπt/l))
f(x)=u(x,0)=∑Ansin(nπx/l)
g(x)=ut(x,0)=∑Bn(cnπ/l)sin(nπx/l)
An=l20∫lf(x)sin(nπx/l)dx
Bn=cnπ20∫lg(x)sin(nπx/l)dx
Then:
Bn=0
An=2(0∫0.25xsin(nπx)dx+0.250.25∫0.75sin(nπx)dx+0.75∫1(1−x)sin(nπx)dx)
0∫0.25xsin(nπx)dx=n2π2sin(nπx)−nπxcos(nπx)∣00.25=
=n2π2sin(nπ/4)−0.25nπcos(nπ/4)
0.25∫0.75sin(nπx)dx=−nπcos(nπx)∣0.250.75=−nπcos(3nπ/4)−cos(nπ/4)
0.75∫1(1−x)sin(nπx)dx=(−nπcos(nπx)−n2π2sin(nπx)−nπxcos(nπx))∣0.751=
=−nπcos(nπ)−cos(3nπ/4)−n2π2−nπcos(nπ)−sin(3nπ/4)+0.75nπcos(3nπ/4)
u(x,t)=∑Ansin(nπx)cos(3nπt)
Comments
Leave a comment