Show that the solution y(x) to the equation sqrt(a2-y2)- alna(a+sqrt(a2-y2))+aln(y)+c=0. Is the solution of the differential equation dy/dx= -y/sqrt(a2-y2)
"\\intop \\frac{\\sqrt{a^2-y^2}}{y}dy=-x+c_1"
"\\intop \\frac{\\sqrt{a^2-y^2}}{y}dy=\\sqrt{a^2-y^2}-aln(\\frac{\\sqrt{a^2-y^2}+a}{y})+c_2"
"\\sqrt{a^2-y^2}-aln(\\frac{\\sqrt{a^2-y^2}+a}{y})+c_2=-x+c_1"
"\\sqrt{a^2-y^2}-aln({\\sqrt{a^2-y^2}+a})+alny+c=-x"
Comments
Leave a comment