Show that the solution y(x) to the equation sqrt(a2-y2)- alna(a+sqrt(a2-y2))+aln(y)+c=0. Is the solution of the differential equation dy/dx= -y/sqrt(a2-y2)
∫a2−y2ydy=−x+c1\intop \frac{\sqrt{a^2-y^2}}{y}dy=-x+c_1∫ya2−y2dy=−x+c1
∫a2−y2ydy=a2−y2−aln(a2−y2+ay)+c2\intop \frac{\sqrt{a^2-y^2}}{y}dy=\sqrt{a^2-y^2}-aln(\frac{\sqrt{a^2-y^2}+a}{y})+c_2∫ya2−y2dy=a2−y2−aln(ya2−y2+a)+c2
a2−y2−aln(a2−y2+ay)+c2=−x+c1\sqrt{a^2-y^2}-aln(\frac{\sqrt{a^2-y^2}+a}{y})+c_2=-x+c_1a2−y2−aln(ya2−y2+a)+c2=−x+c1
a2−y2−aln(a2−y2+a)+alny+c=−x\sqrt{a^2-y^2}-aln({\sqrt{a^2-y^2}+a})+alny+c=-xa2−y2−aln(a2−y2+a)+alny+c=−x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments