Find the integral of (y2 -1 ) dx-2dy = 0
"\\mathrm{We\\;have\\;:\\;\\;}(y^2-1)\\;dx-2\\;dy=0\\\\ \\;\\\\\n\\implies \\;\\dfrac{2\\;dy}{y^2-1}=\\;dx\\\\ \\; \\\\\n\\textup{Integrating both sides , we get}\\\\ \\; \\\\\n\\int \\dfrac{2\\;dy}{y^2-1}=\\int dx\\\\ \\; \\\\\n\\implies \\;\\int \\dfrac{(y+1)-(y-1)}{(y+1)(y-1)}\\;dy=\\int dx"
"\\implies \\;\\int \\dfrac{1}{y-1}\\;dy-\\int \\dfrac{1}{y+1}\\;dy=\\int dx\\\\ \\;\\\\\n\\implies \\;\\ln |{y-1}|\\;-\\ln |{y+1}|=x+C\\\\ \\;\\\\\n\\implies \\;\\ln \\left|\\dfrac{y-1}{y+1}\\right|=x+C\\\\ \\;\\\\\n\\implies \\;\\left|\\dfrac{y-1}{y+1}\\right|=Ae^x\\\\ \\;\\\\"
Comments
Leave a comment