Answer to Question #174796 in Differential Equations for komal

Question #174796

Find the integral of (y2 -1 ) dx-2dy = 0


1
Expert's answer
2021-04-11T14:03:22-0400

We  have  :    (y21)  dx2  dy=0        2  dyy21=  dx  Integrating both sides , we get  2  dyy21=dx        (y+1)(y1)(y+1)(y1)  dy=dx\mathrm{We\;have\;:\;\;}(y^2-1)\;dx-2\;dy=0\\ \;\\ \implies \;\dfrac{2\;dy}{y^2-1}=\;dx\\ \; \\ \textup{Integrating both sides , we get}\\ \; \\ \int \dfrac{2\;dy}{y^2-1}=\int dx\\ \; \\ \implies \;\int \dfrac{(y+1)-(y-1)}{(y+1)(y-1)}\;dy=\int dx


      1y1  dy1y+1  dy=dx        lny1  lny+1=x+C        lny1y+1=x+C        y1y+1=Aex  \implies \;\int \dfrac{1}{y-1}\;dy-\int \dfrac{1}{y+1}\;dy=\int dx\\ \;\\ \implies \;\ln |{y-1}|\;-\ln |{y+1}|=x+C\\ \;\\ \implies \;\ln \left|\dfrac{y-1}{y+1}\right|=x+C\\ \;\\ \implies \;\left|\dfrac{y-1}{y+1}\right|=Ae^x\\ \;\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment