2) Suppose a beam whose one side is free and other side is fixed, ie a cantilever is subjected to a horizontal force ,applied at the free end. Let I=length of the beam ,F=applied force at the free end of the cantilever ,E=modulus of elasticity of the beam ,therefore th moment equation can be written as 𝐸𝐼 𝑑 2𝑦 𝑑𝑥 2 = −𝐹𝑦 − 𝜔 𝑥 2 2 .Solve the differential equation
Given differential equation is-
"El\\dfrac{dy}{dx}=-Fy-\\omega x^2"
"\\Rightarrow \\dfrac{dy}{dx}+\\dfrac{F y}{El}=-\\omega x^2"
Integrated factor I.F. "=e^{\\int \\frac{F}{El}}dx"
"=e^{\\frac{Fx}{El}}"
So Solution of equation is-
"y\\times e^{\\frac{Fx}{El}}=\\int -\\omega x^2e^{\\frac{Fx}{El}}dx"
"=-\\omega^2(x^2e^{\\frac{Fx}{El}}\\times \\dfrac{El}{F}-\\dfrac{2El}{F}\\int xe^{\\frac{F}{El}}dx)"
"=-\\omega^2 \\dfrac{El}{F}(x^2e^{\\frac{Fx}{El}}-2 ( xe^{\\frac{F}{El}}\\dfrac{El}{F}-e^{\\frac{F}{El}}\\times \\dfrac{E^2l^2}{F^2}))"
"=-\\omega^2 \\dfrac{El}{F}\\times e^{\\frac{El}{F}}(x^2-2 x\\dfrac{El}{F}+2 \\dfrac{E^2l^2}{F^2}))+C"
"y= -\\omega^2 \\dfrac{El}{F}(x^2-2 x\\dfrac{El}{F}+2 \\dfrac{E^2l^2}{F^2}))+Ce^{-\\frac{F}{El}}"
Comments
Leave a comment