Question #173726

2) Suppose a beam whose one side is free and other side is fixed, ie a cantilever is subjected to a horizontal force ,applied at the free end. Let I=length of the beam ,F=applied force at the free end of the cantilever ,E=modulus of elasticity of the beam ,therefore th moment equation can be written as 𝐸𝐼 𝑑 2𝑦 𝑑𝑥 2 = −𝐹𝑦 − 𝜔 𝑥 2 2 .Solve the differential equation 


1
Expert's answer
2021-03-31T13:53:53-0400

Given differential equation is-

Eldydx=Fyωx2El\dfrac{dy}{dx}=-Fy-\omega x^2


dydx+FyEl=ωx2\Rightarrow \dfrac{dy}{dx}+\dfrac{F y}{El}=-\omega x^2


Integrated factor I.F. =eFEldx=e^{\int \frac{F}{El}}dx

=eFxEl=e^{\frac{Fx}{El}}


So Solution of equation is-


y×eFxEl=ωx2eFxEldxy\times e^{\frac{Fx}{El}}=\int -\omega x^2e^{\frac{Fx}{El}}dx


=ω2(x2eFxEl×ElF2ElFxeFEldx)=-\omega^2(x^2e^{\frac{Fx}{El}}\times \dfrac{El}{F}-\dfrac{2El}{F}\int xe^{\frac{F}{El}}dx)


=ω2ElF(x2eFxEl2(xeFElElFeFEl×E2l2F2))=-\omega^2 \dfrac{El}{F}(x^2e^{\frac{Fx}{El}}-2 ( xe^{\frac{F}{El}}\dfrac{El}{F}-e^{\frac{F}{El}}\times \dfrac{E^2l^2}{F^2}))


=ω2ElF×eElF(x22xElF+2E2l2F2))+C=-\omega^2 \dfrac{El}{F}\times e^{\frac{El}{F}}(x^2-2 x\dfrac{El}{F}+2 \dfrac{E^2l^2}{F^2}))+C



y=ω2ElF(x22xElF+2E2l2F2))+CeFEly= -\omega^2 \dfrac{El}{F}(x^2-2 x\dfrac{El}{F}+2 \dfrac{E^2l^2}{F^2}))+Ce^{-\frac{F}{El}}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS