Given differential equation is-
Eldxdy=−Fy−ωx2
⇒dxdy+ElFy=−ωx2
Integrated factor I.F. =e∫ElFdx
=eElFx
So Solution of equation is-
y×eElFx=∫−ωx2eElFxdx
=−ω2(x2eElFx×FEl−F2El∫xeElFdx)
=−ω2FEl(x2eElFx−2(xeElFFEl−eElF×F2E2l2))
=−ω2FEl×eFEl(x2−2xFEl+2F2E2l2))+C
y=−ω2FEl(x2−2xFEl+2F2E2l2))+Ce−ElF
Comments