Question #173965

Integrating Factors found by Inspection.


1. y(2xy + 1)dx − xdy = 0


2. y(x^4 − y^2)dx + x (x^4 + y^2)dy = 0


3. (x^3y^3 + 1)dx + x^4y^2dy = 0


4. y(x^2y^2 − 1)dx + x(x^2y^2 + 1)dy = 0


5. y(2x + y^2)dx + x(y^2 − x)dy = 0


6. y(3x^3 − x + y)dx + x^2(1 − x^2)dy = 0


7. y(3x^3 − x + y)dx + x^2(1 − x^2)dy = 0


8. y^2(1 − x^2)dx + x(x^2y + 2x + y) = 0


1
Expert's answer
2021-03-29T17:03:54-0400

Solution.

1. y(2xy+1)dxxdy=0y(2xy + 1)dx − xdy = 0

2xdx+ydxxdyy2=02xdx+\frac{ydx-xdy}{y^2}=0

2xdx+d(xy)=02xdx+d(\frac{x}{y})=0

2xdx+d(xy)=0\int 2xdx+\int d(\frac{x}{y})=0

x2y+x=Cy,x^2y+x=Cy, where CC is some constant.

2. y(x4y2)dx+x(x4+y2)dy=0y(x^4 − y^2)dx + x (x^4 + y^2)dy = 0

x4(ydx+xdy)+y2(xdyydx)=0x^4(ydx+xdy)+y^2(xdy-ydx)=0

ydx+xdy+y2x2xdyydxx2=0ydx+xdy+\frac{y^2}{x^2}\frac{xdy-ydx}{x^2}=0

d(xy)+(yx)2d(yx)=0d(xy)+(\frac{y}{x})^2d(\frac{y}{x})=0

d(xy)+(yx)2d(yx)=0\int d(xy)+\int(\frac{y}{x})^2d(\frac{y}{x})=0

3x4y+y3=Cx3,3x^4y+y^3=Cx^3, where CC is some constant.

3. (x3y3+1)dx+x4y2dy=0(x^3y^3 + 1)dx + x^4y^2dy = 0

x3y2(ydx+xdy)+dx=0x^3y^2(ydx+xdy)+dx=0

x2y2d(xy)+dxx=0x^2y^2d(xy)+\frac{dx}{x}=0

x3y3+3lnx=C,x^3y^3+3\ln{x}=C, where CC is some constant.

4. y(x2y21)dx+x(x2y2+1)dy=0y(x^2y^2 − 1)dx + x(x^2y^2+1)dy = 0

x2y3dxydx+x3y2dy+xdy=0x^2y^3dx-ydx+x^3y^2dy+xdy=0

xdyydxx2+y2(ydx+xdy)=0\frac{xdy-ydx}{x^2}+y^2(ydx+xdy)=0

d(yx)+y2d(xy)=0xyd(yx)+xyd(xy)=0d(\frac{y}{x})+y^2d(xy)=0 \newline \frac{x}{y}d(\frac{y}{x})+xyd(xy)=0

2lnyx+x2y2=C,2\ln{\frac{y}{x}}+x^2y^2=C, where CC is some constant.

5. y(2x+y2)dx+x(y2x)dy=0y(2x + y^2)dx + x(y^2 − x)dy = 0

2xydx+y3dx+xy2dyx2dy=02xydx+y^3dx+xy^2dy-x^2dy=0

2xydxx2dyy2+ydx+xdy=0\frac{2xydx-x^2dy}{y^2}+ydx+xdy=0

d(x2y)+d(xy)=0d(\frac{x^2}{y})+d(xy)=0

x2+xy2=Cy,x^2+xy^2=Cy, where CC is some constant.

6. and 7.

y(3x3x+y)dx+x2(1x2)dy=0y(3x^3 − x + y)dx + x^2(1 − x^2)dy = 0

x3x=Cyylnx,x^3-x=Cy-y\ln{x}, where CC is some constant.

8. y2(1x2)dx+x(x2y+2x+y)=0y^2(1 − x^2)dx + x(x^2y + 2x + y) = 0

y2dxx2y2dx+x3ydy+2x2dy+xydy=0ydx+xdy+x3dyx2ydx+2x2ydy=0d(xy)+x4d(yx)+2x2dyy=0(2Cxy+x2+1)2=4Cx2+x4+2x2+1, where C is some constant.y^2dx-x^2y^2dx+x^3ydy+2x^2dy+xydy=0\newline ydx+xdy+x^3dy-x^2ydx+\frac{2x^2}{y}dy=0 \newline d(xy)+x^4d(\frac{y}{x})+2x^2\frac{dy}{y}=0 \newline (2Cxy+x^2+1)^2=-4Cx^2+x^4+2x^2+1, \text{ where C is some constant.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS