1. y(2xy+1)dx−xdy=0
2xdx+y2ydx−xdy=0
2xdx+d(yx)=0
∫2xdx+∫d(yx)=0
x2y+x=Cy, where C is some constant.
2. y(x4−y2)dx+x(x4+y2)dy=0
x4(ydx+xdy)+y2(xdy−ydx)=0
ydx+xdy+x2y2x2xdy−ydx=0
d(xy)+(xy)2d(xy)=0
∫d(xy)+∫(xy)2d(xy)=0
3x4y+y3=Cx3, where C is some constant.
3. (x3y3+1)dx+x4y2dy=0
x3y2(ydx+xdy)+dx=0
x2y2d(xy)+xdx=0
x3y3+3lnx=C, where C is some constant.
4. y(x2y2−1)dx+x(x2y2+1)dy=0
x2y3dx−ydx+x3y2dy+xdy=0
x2xdy−ydx+y2(ydx+xdy)=0
d(xy)+y2d(xy)=0yxd(xy)+xyd(xy)=0
2lnxy+x2y2=C, where C is some constant.
5. y(2x+y2)dx+x(y2−x)dy=0
2xydx+y3dx+xy2dy−x2dy=0
y22xydx−x2dy+ydx+xdy=0
d(yx2)+d(xy)=0
x2+xy2=Cy, where C is some constant.
6. and 7.
y(3x3−x+y)dx+x2(1−x2)dy=0
x3−x=Cy−ylnx, where C is some constant.
8. y2(1−x2)dx+x(x2y+2x+y)=0
y2dx−x2y2dx+x3ydy+2x2dy+xydy=0ydx+xdy+x3dy−x2ydx+y2x2dy=0d(xy)+x4d(xy)+2x2ydy=0(2Cxy+x2+1)2=−4Cx2+x4+2x2+1, where C is some constant.
Comments