Integrating Factors found by Inspection.
1. y(2xy + 1)dx − xdy = 0
2. y(x^4 − y^2)dx + x (x^4 + y^2)dy = 0
3. (x^3y^3 + 1)dx + x^4y^2dy = 0
4. y(x^2y^2 − 1)dx + x(x^2y^2 + 1)dy = 0
5. y(2x + y^2)dx + x(y^2 − x)dy = 0
6. y(3x^3 − x + y)dx + x^2(1 − x^2)dy = 0
7. y(3x^3 − x + y)dx + x^2(1 − x^2)dy = 0
8. y^2(1 − x^2)dx + x(x^2y + 2x + y) = 0
1. "y(2xy + 1)dx \u2212 xdy = 0"
"2xdx+\\frac{ydx-xdy}{y^2}=0"
"2xdx+d(\\frac{x}{y})=0"
"\\int 2xdx+\\int d(\\frac{x}{y})=0"
"x^2y+x=Cy," where "C" is some constant.
2. "y(x^4 \u2212 y^2)dx + x (x^4 + y^2)dy = 0"
"x^4(ydx+xdy)+y^2(xdy-ydx)=0"
"ydx+xdy+\\frac{y^2}{x^2}\\frac{xdy-ydx}{x^2}=0"
"d(xy)+(\\frac{y}{x})^2d(\\frac{y}{x})=0"
"\\int d(xy)+\\int(\\frac{y}{x})^2d(\\frac{y}{x})=0"
"3x^4y+y^3=Cx^3," where "C" is some constant.
3. "(x^3y^3 + 1)dx + x^4y^2dy = 0"
"x^3y^2(ydx+xdy)+dx=0"
"x^2y^2d(xy)+\\frac{dx}{x}=0"
"x^3y^3+3\\ln{x}=C," where "C" is some constant.
4. "y(x^2y^2 \u2212 1)dx + x(x^2y^2+1)dy = 0"
"x^2y^3dx-ydx+x^3y^2dy+xdy=0"
"\\frac{xdy-ydx}{x^2}+y^2(ydx+xdy)=0"
"d(\\frac{y}{x})+y^2d(xy)=0\n\\newline\n\\frac{x}{y}d(\\frac{y}{x})+xyd(xy)=0"
"2\\ln{\\frac{y}{x}}+x^2y^2=C," where "C" is some constant.
5. "y(2x + y^2)dx + x(y^2 \u2212 x)dy = 0"
"2xydx+y^3dx+xy^2dy-x^2dy=0"
"\\frac{2xydx-x^2dy}{y^2}+ydx+xdy=0"
"d(\\frac{x^2}{y})+d(xy)=0"
"x^2+xy^2=Cy," where "C" is some constant.
6. and 7.
"y(3x^3 \u2212 x + y)dx + x^2(1 \u2212 x^2)dy = 0"
"x^3-x=Cy-y\\ln{x}," where "C" is some constant.
8. "y^2(1 \u2212 x^2)dx + x(x^2y + 2x + y) = 0"
"y^2dx-x^2y^2dx+x^3ydy+2x^2dy+xydy=0\\newline\nydx+xdy+x^3dy-x^2ydx+\\frac{2x^2}{y}dy=0\n\\newline\nd(xy)+x^4d(\\frac{y}{x})+2x^2\\frac{dy}{y}=0\n\\newline\n(2Cxy+x^2+1)^2=-4Cx^2+x^4+2x^2+1, \\text{ where C is some constant.}"
Comments
Leave a comment